This book includes a plain text version that is designed for high accessibility. To use this version please follow this link.
12-02 :: February/March 2012


nanotimes News in Brief


melted at about 1,500° C (2,732° F), then cooled down and finely cut up. Then the glass is melted again and cooled down again. Finally, nanocrystals are generated by controlled heating to about 1,000° C (1,832° F).


The secret of the Jena glass ceramic lies in its consi- stence of nanocrystals. The size of these is at most 100nm in general. “They are too small to strongly disperse light and therefore the ceramic looks translucent, like a natural tooth,” Prof. Rüssel says.


MarcDittmer, Christian Rüssel: Colorlessandhigh strength MgO/Al2


O3 /SiO2 glass-ceramic dental material using


zirconia as nucleating agent, In: Journal of Biomedical Materials Research, Vol. 100B(2012), Issue 2, February 2012, Pages 463-470, DOI:10.1002/jbm.b.31972: http://dx.doi.org/10.1002/jbm.b.31972


Researcher at Ludwig-Maximilians-University (LMU) in Munich, TU Dortmund, University of Oldenburg, and Wuppertal University, Germany, have come up with a strategy for improving the electrical properties of organic semiconductors.


They basically consist of two components, a poly- mer, which transfers an electron when it absorbs a quantum of light, and a so-called fullerene, which accepts the electron. This charge-transfer event constitutes the essential first step in the generation of electricity from light, which requires the separa- tion of negatively charged electrons from positively charged holes. “In order to improve the efficiency of organic solar cells, we need to understand and optimize the process of charge transfer at the in-


Researchers in UK and Republic of Korea made great advance in predicting polymer processing. They describe for the first time, the in silico design, synthesis, and characterization of an architecturally complex, branched polymer with the optimal rheo- logical properties for such structure-property corre- lation studies. Moreover, they demonstrate unequi- vocally the need for accurate characterization using temperature gradient interaction chromatography (TGIC), which reveals the presence of heterogenei- ties in the molecular structure that are undetectable by size exclusion chromatography (SEC). Lian R. Hutchings, Solomon M. Kimani, David M. Hoy- le, Daniel J. Read, Chinmay Das, Thomas C. B. McLeish, Taihyun Chang, Hyojoon Lee, and Dietmar Auhl: In Si- lico Molecular Design, Synthesis, Characterization, and Rheology of Dendritically Branched Polymers: Closing the Design Loop, In: ACS Macro Letters AOP, March 01, 2012, Pages 404-408, DOI:10.1021/mz300059k: http://dx.doi.org/10.1021/mz300059k


67


terface between polymer and fullerene,” Da Como explains.


Felix Deschler, Enrico Da Como, Thomas Limmer, Rapha- el Tautz, Tillmann Godde, Manfred Bayer, Elizabeth von Hauff, Seyfullah Yilmaz, Sybille Allard, Ullrich Scherf, and Jochen Feldmann: Reduced Charge Transfer Exciton Re- combination in Organic Semiconductor Heterojunctions by Molecular Doping, In: Physical Review Letters, Vol. 107(2011), Issue 12, September 16, 2011, Article 127402 [4 pages], DOI:10.1103/PhysRevLett.107.127402: http://dx.doi.org/10.1103/PhysRevLett.107.127402


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89