This page contains a Flash digital edition of a book.
pany was able to determine that the increased shrinkage of the metal would not make a pattern change necessary in this case. “[Solidifi cation] modeling showed exactly where there was a shrink on the alternate no-lead alloy, but it happened to be in an area that didn’t cause any leakage or void after machining,” said Leigh Omer, foundry manager. “T e modeling showed shrinkage porosity exactly where it showed in the casting after destructive testing.”


The Alternatives to Lead


T e two most common alloys used to cast parts for the plumbing industry, C84400 and C83600, contain higher


lead concentra- tions than are allowed by law in some states, including Fresno Valves’ home state of Califor- nia. Researchers estimate that all leaded coppers eventually will be replaced by six to eight diff er- ent alloys. While the


Fig. 1. Copper alloy C87500 exhibits more than 3% more shrink than C83600, making the transition to the no-lead alloy tricky.


Fresno Valves boiler head transi- tion concerned a switch to a silicon- based copper alloy,


the most well-known alternative to leaded copper is copper- bismuth. T e greatest challenge in developing bismuth as an alternative to lead is its supply—the material is scarce, and little is known about the global supply—and resulting cost. “Silicon alloys as a rule are cheaper than the bismuth alloys,” Omer said. “But there’s also a trade-off : yield and machin-


LEAD IN COPPER CASTINGS


Lead is commonly added to many cast copper alloys. Because of the low solubility of lead in copper, true alloying does not occur to any measurable degree. During the solidifi cation of castings, some constituents in a given alloy form crystals at higher temperatures relative to others, resulting in dendrites. The small spaces between the dendrites can interconnect to form micropores. This micro porosity is a consequence of the solidifi cation process. The role of lead is to seal these intradendritic pores. This results in a pressure- tight casting, which is important for fl uid handling applications.


Lead also allows the machining of castings to be performed at higher speeds without the aid of coolants because it acts as a lubricant for cutting tool edges and promotes the formation of small, discontinu- ous chips that easily can be cleared. This results in improved machined surface fi nishes. Lead also plays a role in providing lubricity during service, as in cast copper bearings and bushings. Lead does not have an adverse effect on strength unless present in high concentrations, but it does reduce ductility. Although lead-containing copper alloys can be soldered and brazed, they cannot be welded.


—Sidebar adapted from an article by the Copper Development Association Inc., New York


42 | MODERN CASTING November 2011


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180