This page contains a Flash digital edition of a book.
Transitioning to No-Lead Copper


No-lead copper alloys solidify differently than leaded alloys, so metalcasters must gather information and test the materials to make the switch successfully. SAM SCOTT, ESI NORTH AMERICA, FARMINGTON HILLS, MICHIGAN


copper alloys, which are commonly considered a health risk. Why is the transition tricky? One primary reason: no-lead alloys shrink nearly 3% more during solidifi cation (Fig. 1). When transitioning a casting design from a


F


leaded copper component to a no-lead component, the metalcaster must ask: • Will I have more porosity locations? • Do I need to feed new areas? • How much should I increase riser size to account for more shrinkage?


• Will current acceptable shrink locations no longer be acceptable? In order to understand the eff ects of the


change of alloy, experiments and material testing can be performed, or quick, inexpensive and accurate material property calculations can take their place. T e required thermo-physical and some mechanical properties can be determined using knowledge of the alloy composition and solidifi cation path. T e data that can be gathered in this manner includes conductivity, density, specifi c heat, latent heat (or enthalpy), fraction solid and viscosity. T e diff erence in shrink exhibited by no-lead


alloys was not common knowledge as little as fi ve years ago. Now, most metalcasters are aware that when they transition to a no-lead part, they may need to make changes to their pat- terns to account for the shrink discrepancy. Particularly in cases where some shrink already occurred, the no-lead alloy can lead to unacceptable porosity levels. In other cases, the location of the resulting porosity will dictate that no changes are necessary. If the porosity level is unacceptable, the metalcaster should


proceed with pattern changes, including the use of larger ris- ers, additional risers, altered gate locations, or modifi ed pro-


Fresno Valves converted this 4-lb. boiler head casting from C83600 to C87500 no-lead copper.


cess parameters, such as pouring temperature or rate. If the part is going to feed substantially diff erently, riser location changes or part design changes also may need to be made. For a boiler head casting produced by Fresno Valves & Castings Inc., Selma, Calif., in C87500 copper alloy, none of this was necessary. Via solidifi cation modeling, the com-


November 2011 MODERN CASTING | 41


or more than half a decade, metalcasters and researchers have been working to ease the transition away from leaded


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180