This page contains a Flash digital edition of a book.
Drug Discovery


Continued from page 73


55 Luo, W and Semenza, GL. Pyruvate kinase M2 regulates glucose metabolism by functioning as a coactivator for hypoxia-inducible factor 1 in cancer cells. Oncotarget. 2(7): p. 551-6. 56 Firth, JD, Ebert, BL and Ratcliffe, PJ. Hypoxic regulation of lactate dehydrogenase A. Interaction between hypoxia-inducible factor 1 and cAMP response elements. J Biol Chem, 1995. 270(36): p. 21021-7. 57 Izumi, H et al. Monocarboxylate transporters 1 and 4 are involved in the invasion activity of human lung cancer cells. Cancer Sci. 102(5): p. 1007-13. 58 Majewski, N et al. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell, 2004. 16(5): p. 819-30. 59Vousden, KH. Functions of p53 in metabolism and invasion. Biochem Soc Trans, 2009. 37(Pt 3): p. 511-7. 60Vousden, KH and Ryan, KM. p53 and metabolism. Nat Rev Cancer, 2009. 9(10): p. 691-700. 61 Bensaad, K. Cheung, EC and Vousden, KH. Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO J, 2009. 28(19): p. 3015-26. 62 Bensaad, K et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell, 2006. 126(1): p. 107-20. 63 Matoba, S et al. p53 regulates mitochondrial respiration. Science, 2006. 312(5780): p. 1650-3. 64 Stambolic, V et al. Regulation of PTEN transcription by p53. Mol Cell, 2001. 8(2): p. 317-25. 65 Macheda, ML, Rogers, S and Best, JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol, 2005. 202(3): p. 654-62. 66 Ganapathy, V, Thangaraju, M and Prasad, PD. Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Ther, 2009. 121(1): p. 29-40. 67 Maher, JC et al. Differential sensitivity to 2- deoxy-D-glucose between two pancreatic cell lines correlates with GLUT-1 expression. Pancreas, 2005. 30(2): p. e34-9. 68Wu, CH et al. In vitro and in vivo study of phloretin-induced apoptosis in human liver cancer cells involving inhibition of type II glucose transporter. Int J Cancer, 2009. 124(9): p. 2210-9. 69 Witte, D et al. Overexpression of the neutral amino acid transporter ASCT2 in human colorectal adenocarcinoma. Anticancer Res, 2002. 22(5): p. 2555-7. 70 Kaadige, MR, Elgort, MG and Ayer, DE. Coordination of glucose and glutamine utilization by an expanded Myc network. Transcr. 1(1): p. 36-40. 71 Pedersen, PL. Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancer’s most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr, 2007. 39(3): p. 211-22.


74


72 Mathupala, SP, Heese, C and Pedersen, PL. Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. J Biol Chem, 1997. 272(36): p. 22776-80. 73 Kurtoglu, M, Maher, JC and Lampidis, TJ. Differential toxic mechanisms of 2-deoxy-D- glucose versus 2-fluorodeoxy-D-glucose in hypoxic and normoxic tumor cells. Antioxid Redox Signal, 2007. 9(9): p. 1383-90. 74 Lampidis, TJ et al. Efficacy of 2-halogen substituted D-glucose analogs in blocking glycolysis and killing “hypoxic tumor cells”. Cancer Chemother Pharmacol, 2006. 58(6): p. 725-34. 75 Maher, JC et al. Hypoxia-inducible factor-1 confers resistance to the glycolytic inhibitor 2- deoxy-D-glucose. Mol Cancer Ther, 2007. 6(2): p. 732-41. 76 Singh, D et al. Optimizing cancer radiotherapy with 2-deoxy-d-glucose dose escalation studies in patients with glioblastoma multiforme. Strahlenther Onkol, 2005. 181(8): p. 507-14. 77 Dwarakanath, BS et al. Clinical studies for improving radiotherapy with 2-deoxy-D-glucose: present status and future prospects. J Cancer Res Ther, 2009. 5 Suppl 1: p. S21-6. 78 Prasanna, VK et al. Differential responses of tumors and normal brain to the combined treatment of 2-DG and radiation in glioablastoma. J Cancer Res Ther, 2009. 5 Suppl 1: p. S44-7. 79 Dang, CV. MYC, microRNAs and glutamine addiction in cancers. Cell Cycle, 2009. 8(20): p. 3243-5. 80 Gao, P et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 2009. 458(7239): p. 762-5. 81 Seltzer, MJ et al. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res. 70(22): p. 8981-7. 82 Catane, R et al. Azaserine, DON, and azotomycin: three diazo analogs of L-glutamine with clinical antitumor activity. Cancer Treat Rep, 1979. 63(6): p. 1033-8. 83Wang, JB et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell. 18(3): p. 207-19. 84 Pelicano, H et al. Glycolysis inhibition for anticancer treatment. Oncogene, 2006. 25(34): p. 4633-46. 85Wang, J et al. A glycolytic mechanism regulating an angiogenic switch in prostate cancer. Cancer Res, 2007. 67(1): p. 149-59. 86 Zieker, D et al. Phosphoglycerate kinase 1 a promoting enzyme for peritoneal dissemination in gastric cancer. Int J Cancer. 126(6): p. 1513-20. 87 Ren, F et al. Quantitative proteomics identification of phosphoglycerate mutase 1 as a novel therapeutic target in hepatocellular carcinoma. Mol Cancer. 9: p. 81. 88Vander Heiden, MG et al. Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science. 329(5998): p. 1492-9.


89 Christofk, HR et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 2008. 452(7184): p. 230-3. 90 Christofk, HR et al. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature, 2008. 452(7184): p. 181-6. 91 Hitosugi, T et al. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal, 2009. 2(97): p. ra73. 92 Cosentino, C, Grieco, D and Costanzo, V. ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO J. 30(3): p. 546-55. 93 Jiang, P et al. p53 regulates biosynthesis through direct inactivation of glucose-6- phosphate dehydrogenase. Nat Cell Biol. 13(3): p. 310-6. 94 Kruger, A and Ralser, M. ATM is a redox sensor linking genome stability and carbon metabolism. Sci Signal. 4(167): p. pe17. 95 Perl, A et al. Oxidative stress, inflammation and carcinogenesis are controlled through the pentose phosphate pathway by transaldolase. Trends Mol Med. 17(7): p. 395-403. 96 Coy, JF et al. Mutations in the transketolase- like gene TKTL1: clinical implications for neurodegenerative diseases, diabetes and cancer. Clin Lab, 2005. 51(5-6): p. 257-73. 97 Langbein, S et al. Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted. Br J Cancer, 2006. 94(4): p. 578-85. 98 Liu, H et al. Fructose induces transketolase flux to promote pancreatic cancer growth. Cancer Res. 70(15): p. 6368-76. 99 Bauer, DE et al. ATP citrate lyase is an important component of cell growth and transformation. Oncogene, 2005. 24(41): p. 6314-22. 100 Hanai, JI et al. Inhibition of lung cancer growth: ATP citrate lyase knockdown and statin treatment leads to dual blockade of mitogen- activated protein kinase (MAPK) and phosphatidylinositol-3- kinase (PI3K)/AKT pathways. J Cell Physiol. 101 Kuhajda, FP. Fatty acid synthase and cancer: new application of an old pathway. Cancer Res, 2006. 66(12): p. 5977-80. 102 Zhan, Y et al. Control of cell growth and survival by enzymes of the fatty acid synthesis pathway in HCT-116 colon cancer cells. Clin Cancer Res, 2008. 14(18): p. 5735-42. 103 Nomura, DK et al. Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell. 140(1): p. 49-61. 104Ye, L et al. Monoacylglycerol lipase (MAGL) knockdown inhibits tumor cells growth in colorectal cancer. Cancer Lett. 307(1): p. 6-17. 105 Zaugg, K et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev. 25(10): p. 1041-51. 106Tennant, DA, Duran, RV and Gottlieb, E. Targeting metabolic transformation for cancer therapy. Nat Rev Cancer. 10(4): p. 267-77. Continued on page 75


Drug Discovery World Fall 2011

Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92