This page contains a Flash digital edition of a book.
Therapeutics


Smac/DIABLO (subsequently referred to as Smac) and others. The assembled multiprotein complex, the apoptosome, induces the activation of caspase- 9. Both pathways converge in a common pathway that ultimately leads to apoptosis by inducing the executioner caspases, caspase-3 and -7, which, when not blocked by XIAP, result in DNA frag- mentation and cell death5.


In addition to the controlled activation of cas- pases, apoptosis is also regulated by IAP inhibition of activated caspases. IAPs regulate the activity of initiator and executioner caspases and are defined by the baculovirus IAP repeat (BIR) domains of approximately 70 to 80 amino acid residues that chelate zinc ions and mediate protein-protein inter- actions. Of the eight mammalian IAPs that have been identified, four are involved in regulating apoptosis: cIAP1, cIAP2, XIAP and ML-IAP. With the exception of ML-IAP with only one BIR domain, each contains three BIR domains at their amino-terminus, BIR1, BIR2 and BIR3. All four IAPs contain a carboxy-terminal RING (really interesting new gene) zinc-finger domain which has


E3 ubiquitin ligase activity. XIAP is the only IAP that inhibits the executioner caspases, caspase-3 and -7 and the initiator caspase-96,1.


IAPs and NF-B pathways – cell survival mechanism


cIAP1and cIAP2 play an important role in regulat- ing TNF-mediated NF-B signal transduction via the canonical and non-canonical NF-B pathways. cIAPs interact with TNF receptor-associated fac- tor 2 (TRAF2) and activate the canonical pathway through ubiquitylation of receptor-interacting pro- tein (RIP) kinase (RIP1/RIPK1). The non-canonical pathway is inhibited by the cIAPs, TRAF2 and TRAF3 via ubiquitylation and degradation of NF- B-inducing kinase (NIK). The activated canonical pathway as well the inactivated non-canonical NF- B pathways influence the expression pattern of a variety of transcription factors that participate in immune responses, inflammation, cell growth, sur- vival and development1. The mammalian NF-B family includes five members that form various transcription regulating complexes. Importantly,


Continued from page 38


10 Du, C, Fang, M, Li, Y, Li, L, Wang, X. Smac, a mitochondrial protein that promotes cytochrome c- dependent caspase activation by eliminating IAP inhibition. Cell. 2000 Jul 7;102(1):33-42. 11Verhagen, AM, Ekert, PG, Pakusch, M, Silke, J, Connolly, LM, Reid, GE, Moritz, RL, Simpson, RJ, Vaux, DL. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell. 2000 Jul 7;102(1):43-53. 12 Chai, J, Du, C, Wu, JW, Kyin, S, Wang, X, Shi, Y. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature. 2000 Aug 24;406(6798):855-62.


Continued on page 40


HIGH ACHIEVE


THROUGHPUT ANALYSIS


© Agilent Technologies, Inc. 2011 Drug Discovery World Fall 2011 39

Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92