Drug Discovery
References 1Yen, KE et al. Cancer-associated IDH mutations: biomarker and therapeutic opportunities. Oncogene. 29(49): p. 6409-17. 2 Gupta, V and Bamezai, RN. Human pyruvate kinase M2: a multifunctional protein. Protein Sci. 19(11): p. 2031-44. 3 Zachar, Z et al. Non-redox-active lipoate derivates disrupt cancer cell mitochondrial metabolism and are potent anticancer agents in vivo. J Mol Med (Berl). 4 Clem, B et al. Small-molecule inhibition of 6- phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther, 2008. 7(1): p. 110-20. 5Yalcin, A et al. Selective inhibition of choline kinase simultaneously attenuates MAPK and PI3K/AKT signaling. Oncogene. 29(1): p. 139-49. 6Vander Heiden, MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov. 10(9): p. 671-84. 7Warburg, O, Wind, F and Negelein, E. The Metabolism of Tumors in the Body. J Gen Physiol, 1927. 8(6): p. 519-30. 8 Koppenol, WH, Bounds, PL and Dang, CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 11(5): p. 325-37. 9 DeBerardinis, RJ et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab, 2008. 7(1): p. 11-20. 10Vander Heiden, MG, Cantley, LC and Thompson, CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 2009. 324(5930): p. 1029-33. 11 Dang, CV. The interplay between MYC and HIF in the Warburg effect. Ernst Schering Found Symp Proc, 2007(4): p. 35-53. 12 Reivich, M et al. Measurement of local cerebral glucose metabolism in man with 18F-2- fluoro-2-deoxy-d-glucose. Acta Neurol Scand Suppl, 1977. 64: p. 190-1. 13 Busk, M et al. Inhibition of tumor lactate oxidation: consequences for the tumor microenvironment. Radiother Oncol. 99(3): p. 404-11. 14 Fowler, JS and Ido, T. Initial and subsequent approach for the synthesis of 18FDG. Semin Nucl Med, 2002. 32(1): p. 6-12. 15 Shani, J et al. Distribution of 18F-5- fluorouracil in tumor-bearing mice and rats. Int J Nucl Med Biol, 1978. 5(1): p. 19-28. 16 Zhu, A, Lee, D and Shim, H. Metabolic positron emission tomography imaging in cancer detection and therapy response. Semin Oncol. 38(1): p. 55-69. 17 Dang, CV. Glutaminolysis: supplying carbon or nitrogen or both for cancer cells? Cell Cycle. 9(19): p. 3884-6. 18 Dang, CV. Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Res. 70(3): p. 859-62. 19 Wise, DR and Thompson, CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci. 35(8): p. 427-33.
Drug Discovery World Fall 2011
20 Berardi, MJ and Fantin, VR. Survival of the fittest: metabolic adaptations in cancer. Curr Opin Genet Dev. 21(1): p. 59-66. 21 DeBerardinis, RJ et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A, 2007. 104(49): p. 19345-50. 22 Plathow, C and Weber, WA. Tumor cell metabolism imaging. J Nucl Med, 2008. 49 Suppl 2: p. 43S-63S. 23 Bohndiek, SE and Brindle, KM. Imaging and ‘omic’ methods for the molecular diagnosis of cancer. Expert Rev Mol Diagn. 10(4): p. 417-34. 24Tennant, DA et al. Metabolic transformation in cancer. Carcinogenesis, 2009. 30(8): p. 1269-80. 25 Cairns, RA, Harris, IS and Mak, TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 11(2): p. 85-95. 26 Figueroa, ME et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 18(6): p. 553-67. 27Yan, H et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med, 2009. 360(8): p. 765-73. 28 Mazurek, S. Pyruvate kinase type M2: a key regulator within the tumour metabolome and a tool for metabolic profiling of tumours. Ernst Schering Found Symp Proc, 2007(4): p. 99-124. 29 Hanahan, D and Weinberg, RA. Hallmarks of cancer: the next generation. Cell. 144(5): p. 646-74. 30 Collier, JJ et al. c-Myc is required for the glucose-mediated induction of metabolic enzyme genes. J Biol Chem, 2003. 278(8): p. 6588-95. 31 Dang, CV, Le, A and Gao, P. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res, 2009. 15(21): p. 6479-83. 32 Elstrom, RL et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res, 2004. 64(11): p. 3892-9. 33 Fan, Y, Dickman, KG and Zong, WX. Akt and c-Myc differentially activate cellular metabolic programs and prime cells to bioenergetic inhibition. J Biol Chem. 285(10): p. 7324-33. 34 Robey, RB and Hay, N. Is Akt the “Warburg kinase”?-Akt-energy metabolism interactions and oncogenesis. Semin Cancer Biol, 2009. 19(1): p. 25-31. 35 Furuta, E et al. Metabolic genes in cancer: their roles in tumor progression and clinical implications. Biochim Biophys Acta. 1805(2): p. 141-52. 36 Bensaad, K and Vousden, KH. p53: new roles in metabolism. Trends Cell Biol, 2007. 17(6): p. 286-91. 37 Cheung, EC and Vousden, KH. The role of p53 in glucose metabolism. Curr Opin Cell Biol. 22(2): p. 186-91. 38 Gottlieb, E and Vousden, KH. p53 regulation of metabolic pathways. Cold Spring Harb Perspect Biol. 2(4): p. a001040.
39Yuan, TL and Cantley, LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene, 2008. 27(41): p. 5497-510. 40 Kalaany, NY and Sabatini, DM. Tumours with PI3K activation are resistant to dietary restriction. Nature, 2009. 458(7239): p. 725-31. 41 Shaw, RJ et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell, 2004. 6(1): p. 91-9. 42 Shaw, RJ et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A, 2004. 101(10): p. 3329-35. 43 Wise, DR et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A, 2008. 105(48): p. 18782-7. 44 Kim, JW et al. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol, 2007. 27(21): p. 7381-93. 45 Shim, H et al. c-Myc transactivation of LDH- A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A, 1997. 94(13): p. 6658-63. 46 Semenza, GL. Regulation of Metabolism by Hypoxia-Inducible Factor 1. Cold Spring Harb Symp Quant Biol. 47 Lum, JJ et al. The transcription factor HIF-1 plays a critical role in the growth factor- dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev, 2007. 21(9): p. 1037-49. 48 Semenza, GL. HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 20(1): p. 51-6. 49 Gordan, JD, Thompson, CB and Simon, MC. HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell, 2007. 12(2): p. 108-13. 50 Podar, K and Anderson, KC. A therapeutic role for targeting c-Myc/Hif-1-dependent signaling pathways. Cell Cycle. 9(9): p. 1722-8. 51 Kaelin, WG, Jr. The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer, 2008. 8(11): p. 865-73. 52 Bobarykina, AY et al. Hypoxic regulation of PFKFB-3 and PFKFB-4 gene expression in gastric and pancreatic cancer cell lines and expression of PFKFB genes in gastric cancers. Acta Biochim Pol, 2006. 53(4): p. 789-99. 53 Obach, M et al. 6-Phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia- inducible factor-1 binding sites necessary for transactivation in response to hypoxia. J Biol Chem, 2004. 279(51): p. 53562-70. 54 Koukourakis, MI et al. Pyruvate dehydrogenase and pyruvate dehydrogenase kinase expression in non small cell lung cancer and tumor-associated stroma. Neoplasia, 2005. 7(1): p. 1-6.
Continued on page 74 73
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92