MEDICAL FEATURE
In its simplest form, an endoscope features a tiny camera and light source on the end of a long tube
channels in multi-use endoscopes’. The image sensor features a native
“We couldn’t simply shrink the microscope, which has dozens of distinct bulky parts”
bespoke to transmit both the excitation and fluorescence light, while minimising the background noise generated in the fibre optic cable.
The second probe developed by the
team was an ultra-thin OCT probe, which the researchers said allowed them to gain three to four times higher resolution when compared to similar technologies in clinical use today. ‘To achieve this,’ said Li, ‘we had to use a light source with a broader spectrum of colour, and the challenge was to focus all those colours onto a single spot without making the image look fuzzy. Cameras do this by using a large lens, but we did not have that luxury.’ The probe’s size was reduced by about half that of those currently in use, to about 500µm in diameter.
Li and his team simplified the design
by forming the end of the fibre optic cord into a tiny ball lens made out of silica, which was able to work as well as its larger counterpart. The ball lens is then ground and coated with gold to reflect and focus the light onto the tissue. The small probe had the additional benefit of improved flexibility, allowing the researchers to access and image small lumens in complex organs in animals with much clearer visualisation on tissue structures.
www.electrooptics.com | @electrooptics The ultimate aim is for this kind of
technology to be more readily available and at a realistic price point, as Li explained. ‘Ultimately,’ he said, ‘we want to be able to get images good enough so that we don’t have to remove tissue from the patient.’ The research team are hopeful that they will soon be able to begin clinical trials for their OCT and two-photon probes to establish their viability for use in humans in terms of safety and effectiveness. The probe, estimates Li, costs less than $1,000 to produce, and he believes that this cost could see a dramatic reduction if it goes into mass production.
Single use Camera maker New Electronic Technology (NET) believes single-use endoscopy is the way forward for surgeons and patients, and so has been applying its knowledge to make developments in this field since the creation of the then-milestone quarter-inch CCD image sensor chip-on-tip solution, to fit inside the 6.5mm inner diameter of an endoscope in the 2000s. For this application, ultra-compact
camera technology is demanded to minimise health risks and speed-up convalescence, and the company developed a CMOS camera assembly measuring 1.6mm in diameter with integrated fibre optic lighting. Single-use in this way has the benefit of minimising the infection risks caused by cross-contamination and, Grzegorz Kolodynski, marketing and PR at NET, said ‘the technology could also be applied for the inspection of working
resolution of 400 x 400 pixels at 30 frames per second for live videos, and the camera solution features a modular design and remote image sensor head, with up to three- metre cabling, and additional five metres from camera electronics to camera control unit. Simultaneous image output via HDMI and USB3 allows image transfer to tablets and PCs, or monitors for real-time display. Kolodynski added: ‘Latency-free image improvement for real-time image display via HDMI video-out supports the work of surgeons, and a colour stretch function enables an improved perception of red-ish colour tones, which is especially useful for surgical applications.’ The camera concept means sensor
electronics can be relocated from the tip to the handpiece of medical devices to serve various demands better, he added. EO
NET modular
camera concept for long distance remote-head applications
October 2019 Electro Optics 23
Roman Zaiets/
Shutterstock.com NET
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40