search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Pharmacogenomics


The Sequel System from PacBio


Single molecule, real-time (SMRT) sequencing pro- duces extremely long reads that fully span the CYP2D6 gene. Scientists have now demonstrated that SMRT sequencing offers accurate, base-level resolution even for the most complex elements within this gene. With a complete view of the CYP2D6 gene, it is now possible for scientists to achieve a more thorough understanding of drug metabolism for each new therapy considered. Meanwhile, the rise of population-based genome studies has shown that some clinically-relevant CYP2D6 variants are specific to certain popula- tions or ethnicities, offering better guidance for pharmacogenomic studies. By combining SMRT sequencing with those study results, it should be possible to assemble a complete database of CYP2D6 alleles and to better predict metaboliser phenotypes for a more straightforward path to selecting a target population that will respond most effectively to a drug.


CYP2D6 complexity


Located on chromosome 22, the CYP2D6 gene shares 97% of its sequence with the pseudogene CYP2D7P1, found only 10 kilobases away. The


Drug Discovery World Summer 2017


situation already presents a real challenge for genotyping or sequencing platforms, and is made even more complex by the presence of copy num- ber variation, structural variation and more. In this genetic morass, it is not enough to detect variants; proper classification of a CYP2D6 metaboliser profile requires that variants be phased into distinct haplotypes to resolve the precise number of functional or dysfunctional gene copies in an individual. When a gene dupli- cation is detected, for instance, technologies that cannot phase alleles usually have no way of dis- tinguishing between two copies of an allele with increased function or two copies of an allele with decreased function. Traditionally, scientists have used Sanger sequencing or genotyping platforms to profile the CYP2D6 gene. More recently, next-generation sequencing (NGS) has been incorporated as well. None of these approaches can provide a complete view of the gene and its breadth of variation, though. Genotyping tools are restricted to seeing known variants, and because there are so many catalogued alleles for this gene, most platforms must limit their queries to the top dozen or so


25


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72
Produced with Yudu - www.yudu.com