search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Design


Raven will sail on her chine but with enormous dynamic righting moment generated by the foils, plus water ballast, she does not need high-volume aft quarters to provide form stability like a typical modern yacht


construction technique in a superyacht is unprecedented, according to Baltic. Raven isn’t a classed vessel but the


hull is constructed in line with the parameters of DNV GL classification. ‘We got them involved at an early stage,’ Svenlin says. ‘There were some areas and some details that they were nervous about so we built full scale sections of the parts of the hull with the most difficult shapes just to confirm that everything is totally bonded and to have an understanding of more or less every single layer – how many layers you can have for each cure and so on. That was a really big part of the project in the beginning.’ A structural plan review has also been certified by World Sailing. Weight control has of course been


a key factor throughout every aspect of the project. ‘To build in the lightest way


possible you need to have everyone involved from day one,’ Svenlin says. ‘From the day you start with the hull mould, you should already be taking into account how to avoid using any extra fillers on the hull. And to keep that red line through the whole project is absolutely the key. If you find enough ways to save a hundred grams per square metre by looking closely at every detail – including things which are already lightweight – you end up saving a lot of weight.’ Some of the production techniques


that Baltic has developed specifically for Raven will now be used in future builds. ‘We have learned a lot from this project,’ Svenlin says. ‘For example in 3D printing. It’s a good way to make prototypes, next morning you have it and can test it. We even 3D print with titanium, the pop-up deck cleats are one example where we


have saved a lot of weight. ‘Another technique we have developed


is using projectors to see exactly how much overlap we should have on a bulkhead,’ he says. ‘This has raised the level of quality in the details of our structural bulkheads.’ Raven’s central passenger cockpit


– nicknamed the bird’s nest – is also a significant innovation. ‘There is a lot of engineering in that,’ Baltic Yachts’ project manager for the build, Sam Evans, explains. ‘It’s driven from the designer’s idea not to hide anything, to show the structure and the installations. From the cockpit you can see the bulkheads, the systems and you get a lot of light inside the boat.’ The carbon structure of the bird’s nest


takes all the loads so the acrylic panels can be very thin. ‘The glazing on this boat


One of the two simple but stylish and ultra-lightweight guest cabins


72 SEAHORSE


Initially at least, when sailing in foiling mode the yacht’s fore-and-aft trim will be controlled by a pair of powerboat-style interceptor trim tabs working independently


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120