search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
configurations that these boats are exposed to. ’


In dealing with many of the world’s top players including companies like CDK Technologies, and Carrington Boats, which have produced many of the most extreme offshore machines, along with younger businesses such as Black Pepper Yachts, who built Armel Tripon’s radical looking L’Occitane en Provence, Gurit’s technical sales manager Yannick Le Morvan sees this at first hand. ‘Collaboration is the key to moving these projects forwards,’ he says. ‘The detail with which the modern designs are being built means that the whole exercise is a collaboration rather than the previous relationship where the partners may have simply supplied materials and/or data. A good example of how this works in practice is in the construction of a laminate and the precise way in which the fibres are laid. ‘For a given area we are now incorporating more layers that are thinner and arranged more precisely to achieve the best structural properties. Where in the past we may have used a 300g/m2 fibre at 0° and say 90°, now a large proportion of the laminate is made from 150 gram plies laid in multiple directions. This means that the layup process has to be more accurate which in turn takes more time and, in some cases, requires a slightly different approach. The de-bulking process is more involved too as you have to get the air out from between every ply. ‘The more refined nature of the laminates also has a bearing on the cure cycles which are often more complex and where you need to understand more about the material science to create the best structure. ‘With these and other factors in mind it was great to work with CDK technologies because it is this kind of partnership that is helping to drive these projects forward.’ Not every team in the current Vendée Globe cycle had the luxury of starting their projects from a blank canvas. For teams like Isabelle Joschke’s MACSF and Boris Herrmann’s SeaExplorer (both benefiting from the collaboration between Gurit Structural Engineering and VPLP), upgrading a previous generation design to accept modern foil thinking required a subtly different approach in places. These boats were not originally designed with the current level of foiling in mind, making it harder to include sufficient structure to accommodate the new loads from the foils without increasing the all-up weight. ‘In these cases, in addition to providing sufficient support structure for the foils, you also need to make


Above and right: Hugo Boss is one of 12 teams in this yearʼs Vendée Globe that have called upon Guritʼs


composite engineering expertise to help design and build or modify their boats – thatʼs more than a third of the entire fleet. Guritʼs role isnʼt just limited to preventing things from breaking. It also helps the designers and builders ensure that when things do break – as when Hugo Boss hit a floating object in the Transat Jacques Vabre – they do so without tearing the boat apart


sure that you're not going to break existing structure elsewhere in the boat,’ says Manganelli. ‘You need to work around a layout that hadn't been really optimised for that foil size and position in the first place and you also need to take into account the increasing loads that are being transferred elsewhere. In addition, as the boats go faster, they will slam


harder and so many of the earlier generation boats have ended up reinforcing their hull shells as a result of fitting new foils.’


Whether it’s a brand new launch or a reworked earlier generation design, this Vendée Globe cycle is already proving to be an innovative one before the race has even started. www.gurit.com


q SEAHORSE 63


LLOYD/HUGOBOSS


ALEX THOMSON RACING


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118