search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Technology


Maintaining altitude


Take-off... tick. Intermittent flight... tick. Steady flight over waves and oceans... the loads are almost off the scale. Yet with the help of some brilliant composite engineering it’s happening


Since the first breathtaking pictures of Jeremie Beyou’s Charal in flight there is now plenty of evidence that this impressive display was no one-off party piece. For many in the Imoca 60 fleet, flying offshore with a seven tonne 60-footer travelling at well over 20kts in waves while balanced on a giant foil to leeward and a fin to weather is now the new norm. Little surprise then, that composite experts Gurit have already spent more than 6,000 hours on the various Imoca 60 projects that they are involved with since the last Vendée Globe. Engineering a structure that can cope with such extreme performance has rarely been so important.


Gurit Composite Engineering has been working closely with Imoca 60s for over 20 years. Since Ellen MacArthur’s famous Kingfisher, which was engineered in collaboration with Humphreys Yacht Design and Owen/ Clarke, the company has amassed considerable experience in this field which has contributed to seven of the eight new boats in this year’s Vendée Globe fleet using Gurit materials,


while 12 campaigns have engaged Gurit engineers for aspects of their engineering. Of the new boats in the fleet, Charal, Hugo Boss and DMG Mori carry the signature of Gurit Structural Engineering in collaboration with VPLP yacht design. The amount of time spent on individual projects has also increased. ‘When compared with the previous cycle, the time we have spent on this iteration of Vendée projects is up by at least 50 per cent,’ says Gurit’s principal engineer Paolo Manganelli. ‘As teams focus more on finding a performance edge, we are spending more time in the initial stages of the project where we are working on different design concepts and options to enable these performance gains.’ Over the last 20 years average speeds around the world have increased by around 30 per cent, with top speeds increasing by around 50 per cent, while structures have become lighter. And as the push for performance continues, the current crop is capable of performing a balancing act like no other,


Above: this picture of Jérémie Beyouʼs Charal foiling on just a slight ocean swell at close to 30 knots gives some insight into the colossal forces these boatsʼ keel fins, foils and hull structures have to withstand. Composite engineering has become a more crucial source of competitive advantage for Vendée Globe teams than ever before


challenging the laws of physics and defying conventional thinking of what it is like to sail a racing boat. Similar examples elsewhere are rare, apart from the America’s Cup which has led the foiling charge and seen huge leaps in performance over a short space of time. So how much has the Cup influenced or informed the new look Imoca 60s? ‘The Cup has certainly helped to develop tools and design processes to predict the boat’s behaviour and therefore the simulation of the loads,’ Manganelli says. ‘That’s been a big contribution. In addition, the ability to predict the flying attitude of the boats has also been improved thanks to the work carried out in the Cup. ‘But while there are similarities and links between the two areas, Cup boats return to the dock every day and have chase boats nearby. An Imoca 60 may not be back for a month or more, so we do face a very different set of challenges when it comes to the way in which these boats operate in their normal environment.’


SEAHORSE 61


w


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118