Design
Boom production at Rondal. The in-house design engineers have recently developed further incremental refinements of their high-performance furling boom
it’s no surprise that the top of the list of objectives for the new yacht was “sailing performance to be commensurate with the length increase from the first Aquarius”. At the same time, the vessel needed to meet the rigorous demands of comfort and luxury that are expected in this market. A measure of just how much larger she
is than the first Aquarius is that the new boat has an astounding 45 per cent more accommodation volume. The sail area is nothing short of colossal – almost half an acre upwind (1,958m² / 21,000sq ft) and well over twice that downwind (4,671m² / 50,700sq ft). An addition to Rondal’s normal engineering processes was that lessons learned and valuable feedback from the crew of Aquarius I, could be integrated into the first loop of engineering. That was followed by discussions with the naval architect, the rig consultant and the sailmaker to refine the sailplan, the rig geometry, sail settings and load cases. This phase also included a detailed
analysis of the hydraulic power needed in different racing scenarios. Manoeuvres such as bearing away at a windward mark, hoisting the gennaker (which takes barely more than 30 seconds) and furling the blade jib were simulated with time steps. Volpe says this enabled his team to
be sure that ‘the crew is able to operate the vessel quickly in all the scenarios.’ Next, a global engineering phase
evaluated the spar’s structural performance and the integration of sail and rig systems. This process generated predicted loads to enable deck engineers to specify appropriate blocks and other hardware in advance of the detailed mechanical engineering phase. Although very much a spirit of tradition
yacht with gorgeous lines, proportionately low freeboard and long overhangs, taking advantage of fully tested innovations and system upgrades was also on the shortlist of five key objectives. However, any innovation included in the project had to bring tangible improvements, without adding undue weight and also had to be engineered for absolute reliability. ‘Some innovations may be seriously
cool and add function and enjoyment,’ says Cray. ‘However, they can come with development, time, cost and reliability issues.’ That final point is particularly important – Aquarius l sailed an impressive 11,000 miles in the first five months after handover. The new vessel needs to be just as
capable of being pushed to the limit with a race crew of 30 people as she is easy to handle when cruising, or on delivery with a skeleton crew. As a result, Cray explains
that they steered ‘away from risky innovation projects.’ The scale of this yacht is mind-blowing,
making 130ft J Class yachts look positively diminutive. Most large sailing superyachts are limited by a desire to be able to pass under the Bridge of the Americas on the Panama canal. However, that requirement was waived by the owner once it became clear that revised regulations would impose a new lower limit of 62.5 metres on air draught, a figure a few metres less than the tallest rig to pass to date – see sidebar. In subsequent consultations the owner
re-stated that he wanted ‘no compromise to the sailing performance and therefore we should make no concessions for Panama’ says Cray. He also reiterated his preference for a spoon bow on similar lines to Aquarius l. Once unshackled from Panamax constraints, the yacht’s overall length grew to 65m while air draught crept up to 67.5m for the mainmast and 60m for the mizzen. The single section carbon main mast is a masterpiece. Many years ago, Rondal predicted the ever-growing size of superyachts and the accompanying demand for mammoth spars. It therefore developed a manufacturing process capable of producing masts of almost unlimited size.
Smaller components are cured in a state-of-the-art autoclave 70 SEAHORSE
Engineering the integrated sailing system for Aquarius II
MIKE TESSELAAR
MIKE TESSELAAR
TOM VAN OOSSANEN
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130