FEATURE u Flow & Level Control
Predicting future changes in water quality
How maxon helped Dublin City University engineer new technology for monitoring aquatic environments.
A
s the impact of climate change and land use continue to harm aquatic environments, it is becoming
increasingly important to measure and monitor changes in water quality. When Dublin City University (DCU) Water Institute was developing its new mobile lab technology to help predict future changes in water quality, it turned to precision drive and motor specialist, maxon for help. The project, led by Professor Fiona Regan,
“Industry 4.0 is finding its way into many different industries. The kind of system that Joyce is developing will be prevalent; autonomous sensors that you can leave out and get real-time feedback on the state of rivers or lakes will play a huge role in areas like Agriculture 4.0.”
Dr. Nigel Kent
Joyce O’Grady, a PhD student at DCU, and Dr. Nigel Kent, then the Director of the Centre of Research and Enterprise in Engineering (engCORE) at the Institute of Technology Carlow. The project was sponsored by the Irish Marine Institute and involves studying freshwater sites where the quality is good and monitoring any changes that could impact the ecosystem. The team developed a sensor to detect low phosphate levels in selected catchments for real- time monitoring. Phosphates are a measure of nutrient pollution and control the pace at which algae and aquatic plants are produced. To mix and measure the water sample and the reagent fluid, O’Grady and Kent developed a
28 January 2022 Irish Manufacturing
made to the shaft length since a longer shaft was required with a flat edge to mount the disk. It was critical that the motor could spin above 5,000 to 6,000 rpm to drive fluids towards the outside of the disk for at least 60 seconds and, at the measurement stage, index the disk through 60 degree increments with sub one degree precision. The DC motor and encoder form part of a more extensive integrated firmware system. The system needed to be fully integrated with minimal sample handling to lessen contamination. Mr Leahy also introduced the team to maxon’s
Young Engineers Program (YEP). The programme, which is aimed at students and start-up companies, supports innovative projects with
rivers or lakes will play a huge role in areas like Agriculture 4.0. “For example, the interconnected nature of technology, using drones for smarter spraying, reduces water runoff, which helps prevent water pollution and protects our drinking water resources. This will be the industry focus over the next decade.”
Dublin City University (DCU) is part of
Beyond 2020, a research cluster consisting of six Irish and UK institutes examining new technologies for monitoring environmental waters to understand the role of aquatic ecosystems in a changing global environment. maxon
centrifugal microfluidic disk that acts like a mobile lab, with six tests per disk. The ability to use a mobile lab reduces the risk of contamination, delivers a faster turnaround for results and produces real-time data. When they needed support developing the
disk, Kent contacted Martin Leahy, maxon’s Sales Engineer in Ireland, who specified a DCX 22 mm DC motor and the robust ENX 10 EASY three- channel encoder for the necessary high precision and speed control. Also, modifications were
electric drive systems. It offers technical support, maxon products at discounted prices and promotion opportunities on maxon channels. “I assumed pricing would be a barrier, but the YEP made it a no-brainer as maxon products would have always been on my wish list,” adds Mr Kent. “The level of customisation available, especially at such low volumes, was impressive, and Martin’s advice has been invaluable to the project. I had previously only considered maxon products in final applications but not for prototyping.”
The sensor is now fully validated, and studies
are continuing in other areas with the full device. One study has been completed on the River Liffey, and another is due in a lower catchment area. The system will be replicated for four more studies to complete the project in its fifth year. Mr Kent goes on: “Industry 4.0 is finding its
way into many different industries. The kind of system that Joyce is developing will be prevalent; autonomous sensors that you can leave out and get real-time feedback on the state of
www.maxongroup.com
www.irish-manufacturing.com
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40