search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Sustainable Converting Increasing sustainability in plastics


Dr Simona Maccarrone, materials scientist at online materials database Matmatch, explains what new solutions suppliers are adopting to increase sustainability in the plastics market


developing a bioplastic that was made from banana peels.


SUSTAINABLE STYLE The fashion industry is also becoming sustainable. Salvatore Ferragamo, one of the biggest names in Italian fashion, created a collection that uses a sustainable fabric from citrus juice byproducts. Those fabrics are formed from a silk-like cellulose yarn that can be blended with other materials featuring a soft and silky hand-feel. Switching to bioplastics means to apply bioeconomy – an economy where goods are made from responsibly produced biomass – to rethink the future of plastics. The bioeconomy is an essential component of the circular economy, as it provides the resource base for a vast amount of economic activities. In the circular economy, material flows are captured and reused, and biological flows are designed to re-enter and replenish nature safely. A recent report by McKinsey, the Ellen


T


he war on plastic waste is arguably one of the biggest environmental battles of the 21st


century. While delivering many benefits, plastics still have critical drawbacks. Aſter a short first-use cycle, 95 per cent of plastic packaging material of an estimated value between 80 and 120 billion USD annually, is lost to the economy. One third of plastic packaging escapes


collection systems, generating significant economic costs by reducing the productivity of vital natural systems such as the ocean and clogging urban infrastructure. The cost associated with greenhouse gas emissions from its production, which is estimated at $40 billion USD annually, should also be considered.


BUILDING BLOCKS Earlier this year, toymaker LEGO announced that its first line of sustainable bricks (made from sugarcane-derived polyethylene) will hit the shelves in 2018. The LEGO group joined the Bioplastic Feedstock Alliance (BFA) in 2016, an organisation that works with manufacturers, such as Coca-Cola, Danone, Nestle, P&G, Unilever to name just a few, to responsibly source bioplastics. As stated in the BFA whitepaper, “supporting a system of continuous


20 October 2018


improvement for biomass production, we can build healthier, more resilient ecosystems that provide improved ecosystem services to local communities and better protection from a changing climate – while still providing the materials our global economy needs to function and maintaining food security.”


GLOBAL IMPACT The growing popularity of bioplastics and biomaterials represent a unique opportunity to reduce the impacts of our dependence on fossil resources and contribute to the reduction of CO2 emissions responsible for global warming. Realising the benefits of responsible sourcing will also make our farm land and ecosystems more resilient. So, how is the industry reinventing itself? Besides well established sources of bioplastics like starch, we are seeing a growing interest in new materials that can be used to create bioplastics. Some use hemp waste to create new biocomposites suitable for 3D printing and a wide array of industrial and personal applications, while others use coffee or even beer leftovers to create special 3D printing materials, with visibly unique print finishes. In another example, 16 year old student Elif Bilgin, from Istanbul in Turkey, won Google’s 2013 science fair by


MacArthur Foundation, and the World Economic Forum - The New Plastics Economy: Rethinking the future of plastics - finds that applying circular-economy principles could dramatically reshape the economics of plastics on a global scale and help the environment.


KNOWLEDGE IS POWER Here at Matmatch we also want to support a sustainable future by providing design engineers access to materials information that helps them consider the environmental impact of plastic earlier in the design process. We also want to give innovative plastics suppliers a new way to reach those customers willing to employ their environment-friendly materials.


matmatch.com


convertermag.co.uk


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103