This page contains a Flash digital edition of a book.
BSEE BOILERS & HOT WATER


Advertising: 01622 699116 Editorial: 01354 461430


IT’S FULL STEAM AHEAD! Boosting boiler house efficiency


With budget constraints and pressure to reduce carbon emissions, the need to enhance productivity, cut maintenance workloads and improve system safety have become high on the agenda for energy centre operators.


Chris Coleman, Marketing Product Manager – Condensate Handling at Spirax Sarco, offers five ways to boost boiler house efficiency right from the heart of the steam system.


he boiler house is the engine room that powers the whole steam system, making it the ideal place for identifying efficiencies. By targeting the centre of the steam system we can find the best investments to reduce fuel consumption, carbon emissions, water use, and overall running costs. For operators, there are numerous ways this can be achieved.


T 1. Reverse Osmosis


Reverse osmosis (RO) is a water purification technology used to remove minerals and eliminate boiler scaling, and is one of the simplest techniques to maximise operational savings. It works by using semi-permeable membranes with pores so fine 98 per cent of all salts are removed from the incoming supply, allowing water to pass through with minimal impurities.


This diminishes the need for boiler treatment chemicals, reduces ongoing maintenance costs, fuel consumption and water and energy losses, and makes RO a cost-effective way to maximise savings with payback achieved in as little as 12-18 months.


2. Automatic Total Dissolved Solids (TDS) Control


The TDS blowdown process is essential to ensuring a clean, dry steam supply and can be accomplished either manually or automatically. During boiler operation, TDS levels will increase and may rise above accepted levels if not monitored.


This will cause a foaming condition which will contaminate the steam and may cause priming to take place. It can also cause fouling and water hammer issues for control valves, heat exchangers and steam traps.


Automatic control systems measure the conductivity of the boiler water, compare it with a set point, and automatically open a blowdown control valve if the TDS level is too high. This maintains a constant TDS level and minimises the loss of water from the boiler, as well as associated energy losses.


3. Flash Steam Recovery


uBy targeting the centre of the steam system you can find the best investments to reduce fuel consumption, carbon emissions, water use, and running costs.


Flash steam is formed when high pressure condensate is exposed to a large pressure drop, often created during the blowdown process. Venting flash steam with no form of heat recovery wastes energy but, by recovering flash steam and feeding it back into the feed tank via a deaerator head, companies can make economic and environmental savings. A flash vessel is just one method that can be used to recover energy by separating flash steam from condensate. As condensate enters the flash vessel, flash steam is produced and can be piped from the top of the vessel to the feed tank via the deaerator.


Float traps can be fitted to the outlet of the flash vessel where residual blowdown water will be drained. The water


will still be hot at this point and is allowed to pass into the plated heat exchanger where it gives up its heat to the circulating cold make-up water. In other words, by using the hot water from the flash vessel, heat energy is recovered. The use of both a flash vessel and plated heat exchanger pack, will allow you to recover up to 80 per cent of the energy from the rejected TDS water, which can also result in fuel savings, a reduction in carbon dioxide emissions, and the elimination of unsightly plumes of steam.


4. Exhaust Gas Heat Recovery


Recovering heat from the exhaust gases of heavy fuel oil or biomass boilers can be difficult because dirt can block and damage conventional heat exchangers. Energy recovery from exhaust gases, however, can provide valuable savings and significant reductions in carbon emissions. Exhaust gas heat recovery systems work by making use of the heat that would have otherwise have left the system in the form of waste flue gasses. This recovered heat can be used to preheat the water entering the boiler thereby reducing the amount of additional energy required to boil the water.


The development of heat pipe technology can be used as the core heat exchange component for exhaust gas energy recovery. By using heat pipe technology, fuel costs and carbon emissions are lowered. This means the pipes become easy to maintain and ultimately prove to be an extremely effective way to cut operational costs.


5. Steam System Conditioning


Steam system conditioning is based on the principle of water and condensate treatment optimising the efficiency of the entire steam system. A clean boiler is only one part of this, and water conditioning can be a hugely effective way to maximise energy efficiency.


The feed water storage system is vital to the whole steam system, as it not only stores the energy in returned condensate for re-use in the boiler, but balances and deaerates returned condensate, flash steam and raw water supplies. Steam system conditioning can reduce chemical use, the risk of corrosion and maintenance costs, while increasing the reliability of the steam system. This results in greater productivity.


As outgoing costs and productivity levels have become a major priority for energy centre operators, these relatively simple but extremely effective measures can improve efficiency significantly. An efficient boiler house is crucial to the overall steam system and by implementing these techniques we hope that operators can see benefits both environmentally and economically.


www.spiraxsarco.com 18 BUILDING SERVICES & ENVIRONMENTAL ENGINEER JULY 2017 VISIT OUR WEBSITE: www.bsee.co.uk ‘ The use of both


a flash vessel and plated heat exchanger pack, will allow you to recover up to 80 per cent of the energy from the rejected TDS water, which can also result in fuel savings, a reduction in carbon dioxide emissions, and the elimination of unsightly plumes of steam.





uAn efficient boiler house is crucial to the steam system.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284  |  Page 285  |  Page 286  |  Page 287  |  Page 288  |  Page 289  |  Page 290  |  Page 291  |  Page 292  |  Page 293  |  Page 294  |  Page 295  |  Page 296  |  Page 297  |  Page 298  |  Page 299  |  Page 300  |  Page 301  |  Page 302  |  Page 303  |  Page 304  |  Page 305  |  Page 306  |  Page 307  |  Page 308  |  Page 309  |  Page 310  |  Page 311  |  Page 312  |  Page 313  |  Page 314  |  Page 315  |  Page 316  |  Page 317  |  Page 318  |  Page 319  |  Page 320  |  Page 321  |  Page 322  |  Page 323  |  Page 324  |  Page 325  |  Page 326  |  Page 327  |  Page 328  |  Page 329  |  Page 330  |  Page 331  |  Page 332  |  Page 333  |  Page 334  |  Page 335  |  Page 336  |  Page 337  |  Page 338  |  Page 339  |  Page 340  |  Page 341  |  Page 342  |  Page 343  |  Page 344  |  Page 345  |  Page 346  |  Page 347  |  Page 348  |  Page 349  |  Page 350  |  Page 351  |  Page 352  |  Page 353  |  Page 354  |  Page 355  |  Page 356  |  Page 357  |  Page 358  |  Page 359  |  Page 360  |  Page 361  |  Page 362  |  Page 363  |  Page 364  |  Page 365  |  Page 366  |  Page 367  |  Page 368  |  Page 369  |  Page 370  |  Page 371  |  Page 372  |  Page 373  |  Page 374  |  Page 375  |  Page 376