search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Calibration A


s documentation and technology has evolved, so too has the way we manage calibration. In the beginning,


there was no way to document calibration findings other than with a pen and paper. This information was brought back from the field, entered into a form, and filed away. Managing hundreds or even thousands of paper calibration documents comes with the inherent risk of misplaced, lost, or damaged documents. Additionally, a paper and pen system is labour-intensive, time-consuming, prone to errors, and provides little to no opportunity to analyse historical trends.


DigiTal sysTems enTeR THe scene Databases As we progress through time, more digitalised systems of calibration management have emerged including the use of spreadsheets and databases. While certainly a step in the right direction, this method of documentation still has its drawbacks. Similar to the pen and paper method, this form of recording calibration data is still time-consuming and error-prone. It also lacks automation in that reminders and tasks cannot be set up on instruments that are due for calibration.


software systems The use of software to manage calibration reports was the next giant leap. The calibration module within some maintenance management software allows instrument data to be stored and managed efficiently in a plant’s database. But again, this method falls short due to lack of automation, limited functionality, and often non-compliance with regulatory requirements (for example, FDA or EPA requirements) for managing calibration records.


Dedicated calibration solutions Advances in technology seem to come faster and faster. Today, dedicated calibration software is the most advanced solution available to support and guide calibration management activities. With calibration software, users are provided with an easy-to-use Windows Explorer-like interface. The software manages and stores all instrument and calibration data. This includes the planning and scheduling of calibration work; analysis and optimisation of calibration frequency; production of reports, certificates, and labels; communication with smart calibrators; and easy integration with maintenance management systems such as SAP and Maximo. The result is a streamlined, automated calibration process that improves quality, plant productivity, safety, and efficiency. In order to understand how this type of


software can help better manage process plant instrument calibrations, it is important to consider the typical calibration management tasks that companies undertake. There are five main areas here: planning and decision-making, organisation, execution, documentation, and analysis.


54


The evolution of calibration documentation


Here, Beamex’s Tiffany Rankin discusses the evolution of calibration documentation from paper entry through to the latest technology.


Planning and decision-making


Instruments and measurement devices should be listed and classified into ‘critical’ and ‘non- critical’ devices, with calibration ranges and required tolerances identified for each individual device. The calibration interval, creation, and approval of standard operating procedures (SOPs), and selection of suitable calibration methods and tools should also be defined. Finally, the current calibration status for every instrument should be identified.


Organisation Organisation involves training the company’s calibration staff in using the chosen tools and how to follow the approved SOPs. Resources should be made available and assigned to carry out the scheduled calibration tasks.


execution The execution stage involves staff carrying out assigned calibration activities and following the appropriate instructions before calibrating a device, including any associated safety procedures.


Documentation Unlike many of the more archaic methods, calibration software generates reports automatically, and all calibration data is stored in one database rather than multiple disparate systems. Calibration certificates, reports, and labels can all be printed out on paper or sent in electronic format. The documentation and storage of calibration


results typically involve electronically signing or approving all calibration records generated.


analysis Improvements in documentation lead to improvements in analysis. Using specialised calibration management software enables faster, easier, and more accurate analysis of calibration records and identification of historical trends. Also, when a plant is being audited, calibration software can facilitate both the preparation process and the audit itself. Locating records and verifying that the system works is effor tless when compared to traditional calibration record keeping. Regulatory organisations and standards such as FDA and EPA place demanding requirements on the recording of calibration data. Calibration software has many functions that help in meeting these requirements, such as change management, audit trail, and electronic signature functions. Based on the results, analysis should


be performed to determine if any corrective action needs to be taken. The effectiveness of calibration needs to be reviewed and calibration intervals checked. These intervals may need to be adjusted based on archived calibration history. If, for example, a sensor drifts out of its specification range, the consequences could be disastrous for the plant, resulting in problems such as costly production downtime, safety issues, or batches of inferior quality goods being produced which may then have to be scrapped.


June 2021 Instrumentation Monthly


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78