search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Gas sensing


17405 for CO2 and EN ISO 21258 for N2O. For the measurement of CO2 and N2O, Non Dispersive Infra-Red (NDIR) is the standard reference method (SRM).


Calibration CEMS can be calibrated with standard gases, but the best way to reduce uncertainty in GHG measurements is to run an NDIR analyser in the measurement of the actual sample gas. Alternatively, an NDIR analyser could be installed to provide continuous GHG measurements; thereby employing the SRM. NDIR analysers utilise a spectrophotometer with specificity for individual gases. Signal Group for example, manufactures NDIR analysers with


a dual parameter capability for CO2 and N2O in one enclosure. This analyser has individual gas sample cells that have a measuring range (cell length) designed specifically for the measured gas and range. NDIR analysers with Gas Filter Correlation, such as the Signal ‘Pulsar’ range, provide extremely high levels of specificity to the gas being measured, because they use the target gas as an optical filter. Consequently, all of the wavelength in the IR spectrum that this gas absorbs will be removed from the spectrum, leaving a perfect reference with which to compare the sample absorption. As a result, there can be no cross-interference from other gases in the sample – such as H2O for example.


Obviously condensation inside any analyser


is to be avoided, but freedom from H2O interference in the measurement method, is of


particular importance, and means that the Signal Pulsar can operate with any non- condensing sample. Conveniently, the latest development in the


Pulsar analyser range is a built-in IP address, which means that users can connect with their analysers at any time from anywhere. Alternatively, if the data needs to be available to on-site personnel, the Signal analysers now have a detachable tablet which can connect with the analyser using its built-in WiFi. This


means that whilst the analyser may be located in an inconvenient location, the user can connect with it from the comfort and safety of somewhere nearby. In summary, as the world increasingly seeks


to implement measures to fight climate change, the requirement for accurate GHG emissions monitoring will increase as organisations seek to lower their carbon footprint and comply with the inevitable regulatory requirements.


Signal Group www.signal-group.com


New demands for enhanced


Greenhouse Gas monitoring


Instrumentation Monthly June 2021 39


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78