search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
FEAT RE FEA ATURE


COM RESSE


COMPRESSED AI R DIGITA LY


or all its consumption within industry – leading to its status as the ‘fourth utility’ by many – compressed air


F


equipment has yet to truly capitalise on the opportunities that the IoT presents. High-quality energy and performance at a cost-effective price continues to be a key consideration for all businesses, and data-driven insights that achieve this are to be enc


ouraged. can help


With generating compressed air


accounting for 10 per cent of total energy costs in industry, ensuring wastage is kept to a minimum should be a key concern for all operators. Industry averages suggest energy costs account for more than 80 per cent of the total cost of ownership of a compressor, so performance optimisation, leak reduction and practical air management processes should be welcomed. Industry 4.0 and the IoT are the greatest opportunities available today to help organisations work smarte r.


Many organisations do not have the time or resources available to make the most of the data and information they collect. Alternatively, the trend seems to be to only consider data when an issue arises, rather than using it to effectively manage a compressed ai r system .


THE HREE HE THREE STAGES OF ANALY TAGES OF ANALYTLYTICSICS


There are three key stages to analytics. The first is as simple data, outlined above, which is where data is collected but not processed in any meaningful way. The next phase is predictive, whereby analytical tools are used to ‘consume’ data. This will then make predictions about unknown future


occurrences, using a range of techniques such as data mining, statistics, modelling and machine learning to do so.


DIGITALLY DRIVI G COMPRESSED MANCE


AIR PERFORMANCE


For com ressed air u ers, the Internet of T ings (IoT) i enabl ng organisations tom nage, opti improve equipment processes. Charl s Joel, global IoT and analytics director at Gardner Denver, discusses how digital data looks set to provide analytics with real value for those using compressed air services


For compressed air users, the Internet of Things (IoT) is enabling organisations to manage, optimise and prove equipment processes. Charles Joel global


se and T and analyti s director at Gar ner Denver, discusses digital data looks set to provide analytics w th real val e for those usi g com ressed air servi es


TALLY DRIVING COMPRE SSE D AIR PERFORMA


valuable insights into how a compressed air systemis running, and offer


recommendations into how its operations could be optimised and improved. The final stage is cognitive analytics. This is a strategy that describes how analytics and technologies can be applied to help humans make smarter decisions. A cognitive system will learn through its interactions with data and responses from the end user. It draws inferences from existing data and patterns; draws conclusions from existing knowledge bases; and then learns from this to inform future decision-making an d business intelligence. Also, because a cognitive systemis in a perpetual state of learning, it wi deliver the requi


red outcomes in the ll keep adapting to


most efficient way possible . A MODERN CONN MODERN I ICONN


To meet this need, Gardner Denver has introduced a new digital platform to the


When based upon logical and intelligent market. iConn is a cloud-based, air rules, predictive analytics can give businesses the right info rmation whe n needed. For the IoT to truly be successful in the compressed air market, businesses will need to work collaboratively with an informed and knowledgeable organisation that has the in-depth understanding to establish the right rules within a system. These are the rules that will provide


20 20 OC OCTOBE BER 201 2017 | FAC ACTORY EQ EQUIPMEN PMENT


management platform, which has been developed to deliver advanced analytics, enabling operators to stay in control of their installation. The system provides historic, real-time, predictive and cognitive analytics, allowing users to rectify potential issues before they happen. The platform is useful for


businesses with multiple remote sites or


unmanned installation, as it enables users to monitor compressor


performance from a single location, via their mobile device, tablet or PC.


iConn helps minimise fault incidences for increased uptime, and also provides detailedmachine parameters and over- time trend analysis to enable plant managers to optimise system


performance. Compressor or ancillary asset data can be transferred securely via -Fi to a wide range of nsuring data security. services also allow me analytics o r


users to view real-t i iConn’s cloud-based connected devices, e GSM, Ethernet or Wi


access data throug h open APIs . AN OPEN FU URE AN OPEN FUTURE


While iConn is available as standard on all new CompAir machines from Gardner Denver and can be retrofitted to existing compressor installat throughout its devel


fact that the platform also supports ancillary and non-Gardner Denver based products. The aim is to provide a one- stop digital experience for managing an entire compressed a Data analytics offe


rs organisations the ir system.


most valuable means of evaluating compressed air generation, helping to manage, optimise and improve usage.


www. www ww.gardn de dnerdenver.com / FACTORY FACTORYEQUIPMENT RYEQUIPMENT


opment has been the ions, a key feature


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284  |  Page 285  |  Page 286  |  Page 287  |  Page 288  |  Page 289  |  Page 290  |  Page 291  |  Page 292  |  Page 293  |  Page 294  |  Page 295  |  Page 296  |  Page 297  |  Page 298  |  Page 299  |  Page 300  |  Page 301  |  Page 302  |  Page 303  |  Page 304  |  Page 305  |  Page 306  |  Page 307  |  Page 308  |  Page 309  |  Page 310  |  Page 311  |  Page 312  |  Page 313  |  Page 314  |  Page 315  |  Page 316  |  Page 317  |  Page 318  |  Page 319  |  Page 320  |  Page 321  |  Page 322  |  Page 323  |  Page 324  |  Page 325  |  Page 326  |  Page 327  |  Page 328  |  Page 329  |  Page 330  |  Page 331  |  Page 332  |  Page 333  |  Page 334  |  Page 335  |  Page 336  |  Page 337  |  Page 338  |  Page 339  |  Page 340