search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
• • • SMART BUILDINGS & IOT • • •


ASIC, SoC and SiP: perfect partners


Richard Mount, director of sales at ASIC design and supply company Swindon Silicon Systems, breaks down the ASIC, SoC and SiP integrated circuits (ICs) integral to intelligent sensors


A


ccording to Fictiv’s 2022 State of Manufacturing report, 90% of


manufacturers are using digital processes. Sitting at the heart of any digital strategy is a smart sensor that converts real-world variables into digitised data.


But, as sensor technology grows in sophistication, how can we get all of this extra functionality into a miniature device for a reasonable cost?


The majority of sensors convert a physical change into an electrical one. Understanding what this change means is a task for a higher-level control system. Once a manufacturer knows they want to integrate a smart sensor into their application, they’re bound to have some follow-up questions: what if the sensor can be made more sophisticated?


How about conditioning the data and making the sensor response more linear? Calibrating the data to counter the effects of temperature, for example? Could the sensor filter unimportant events and only communicate changes that were relevant to the wider system?


Equipping a sensor with such functions doesn’t need to come at a cost that’s unfeasible for most manufacturers, and there are many forms of custom IC that can help achieve these ambitions.


ASICs


An ASIC is a custom chip that has been designed specifically for a customer’s individual application. This ensures that the ASIC is unique to any other offering on the market in terms of performance and differentiates the customer’s product from the competition.


ASICs are complex devices containing many functions. As well as including the processing, conditioning and communication functions required for sensor interfacing, designers working on today’s Industrial Internet of Things (IIoT) related products and systems find an ASIC will incorporate a number of cost and performance benefits.


While there is a short-term cost associated with ASIC development, the return on investment is high. By integrating functionality such as the analogue front end, signal processing and IoT connectivity into one system, the overall cost of the final product is much lower compared to its loaded PCB equivalent. Furthermore, because of its size and the fact that an ASIC replaces most of a PCB full of components, the user can expect a much higher efficiency and lower power consumption than they would receive from an off-the-shelf alternative.


36 ELECTRICAL ENGINEERING • MAY 2023 electricalengineeringmagazine.co.uk


Customers also choose the ASIC route to guarantee component supply for the lifetime of their product with no gaps in availability. Swindon, for instance, provides assurances that the device will be available until the customer end-of-lifes its product manufacture. This is in sharp contrast to a solution built using standard components, which are often at risk of obsolescence once the part no longer makes financial sense to the supplier.


SoC


When designing an ASIC, it often makes sense to integrate other parts of the circuit schematic onto the same silicon die. This is known as a System on Chip, which combines all the required analogue and digital functions of a typical IC, along with an embedded microprocessor. This means the SoC is a complete electronic substrate system that may contain analogue, digital, mixed-signal and radio frequency functions with the added advantage of a powerful processor at its core.


The main driver for this level of integration in a sensor is reduced size and lower bill of materials


cost. To illustrate this, let’s look at proximity sensors as an example. Many of these sensors are no bigger than a finger, including sensor element and PCB sealed in a waterproof enclosure. Some 20 years ago, this level of integration would have been very challenging and out of reach for most companies, due to its cost and complexity. Now, alternatives such as SoC make fabricating these sensors far more accessible. A SoC usually contains a variety of components that include, but are not limited to, software and programming, voltage regulators and power management circuits, analogue interfaces such as digital-to-analogue converters and vice-versa, a microprocessor and RAM and ROM memory. It comes with predesigned and pre-verified blocks, often called intellectual property (IP) blocks, obtained from either from the chip manufacturer themselves or from verified third parties and combined on a single chip. Because a SoC includes both the hardware and


software, it often uses less power, has better performance, requires less space and is more


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50