search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
FEATURE ENCLOSURES MORE THAN A BOX


There’s a lot to be learned from the fable, The Three Little Pigs. While the tale teaches us to stay wary of menacing wolves, it also reminds us of the importance of a sturdy home. Electrical equipment requires robust protection and a durable enclosure is vital to its safety. Here, Andrew Keith, product development director at power resistor manufacturer Cressall Resistors, explores the top considerations when designing an effective enclosure


W


hen designing a complex network of electrical components, an enclosure


may be something of an afterthought. After all, it is simply a box that houses electrical components and connections, wiring, machinery controls and related equipment - all the important stuff. However, it is this misconception that


leads to failure - especially if important design considerations are forgotten or unfulfilled. Although enclosures can seem like a non-critical element in electrical system design, a failure to secure electrical equipment can result in a build up of moisture or dirt, a drastic change in temperature and poor ventilation.





KEEP YOUR COOL When designing a heat management system for an enclosure, manufacturers must account for external temperature fluctuations such as solar gain — heat from the sun. In addition, electrical equipment can generate significant heat as a by-product of their operation, known as losses, inside the cabinet. Failing to safely remove these losses will increase the temperature inside the enclosure and could adversely affect its contents. One remedy is passive cooling. This


technique uses the simple principal of convection to distribute heat from a higher temperature area to a lower one.


  


To do this, enclosures must be designed with strategically placed vents that replace hot air inside the enclosure with cooler, external air. However, the feasibility of passive


cooling depends on its environment and the ambient temperature surrounding the enclosure must remain lower than the air inside it. Additional air filters may also be required to prevent dust or dirt from infiltrating the enclosure. Instead, design engineers may want to opt for active cooling by installing heat exchangers or air conditioners to cool the air inside the enclosure.


Customisation Saving money in-build


Cu


Savi n g m o n ey i n - b uild and on-site...


omisa on n d o n -s i te...


See the full customisation video on YouTube


Tel: 01952 605849


Email: sales@spelsberg.co.uk Web: www.spelsberg.co.uk


Find out more


8 MARCH 2020 | ELECTRICAL ENGINEERING





Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44