search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
• • • SMART BUILDINGS & IOT • • •


Your factory could be the next target for a cyber- attack. Will you be prepared?


Erik Halthen, product development manager at Analog Devices, looks at how cyber attacks can impact businesses and offers best practice advice


Y


ou are the head of a leading manufacturer in charge of North American operations working through a normal day when suddenly


you get a report from one of your largest factories that shows a list of product defects. The trend appears to have started some time


ago and keeps climbing, but the factory manager can’t seem to locate the source of the defect. Everything in the factory seems to be running as intended. Do we take the equipment offline to run more detailed diagnostics, or do we continue and hope the trend ceases and product output reverts to normal? Finally, you reach the decision, the equipment


will come offline for nonroutine maintenance. After hours of diagnostics, there seems to be a breakthrough. Although everything looks normal on the surface, there is a strange anomaly with the PLC software. With further diagnostics, it becomes evident that the factory was hacked! But why was this not discovered earlier? The hackers must have been very clever and kept the malicious code hidden so that the operators would think everything was normal. After weeks of progressively increasing


defects and having to take equipment offline, the factory is back up and running, but were we successful in quarantining all the effected equipment? Fortunately, we require all factory floor devices, including the drives and servos, to have a hardware root-of-trust so that we can


confidently push a software update to all potentially affected machines globally. Maybe this update will save our plant in Japan from having the same issues. With the cyber-attack surface changing, there is


increased security risk and a greater need for security solutions at the edge. It is imperative that factories adopt a resilient posture against cyber- attacks, meaning the ability to detect and recover when an attack takes place. The question is no longer if I will get hacked, but


when will I get hacked. Building a connected factory requires smart edge devices to be able to recover from attacks. This requires security to be implemented at the lowest level: the hardware itself. Being able to trust the lowest levels of a device’s boot and issue software updates enables a factory to recover quickly and resume normal operations.


What is changing the


security risk? The need for edge computing means more devices are being connected that interact with the real- world based on the data they receive. These smart devices are critical to enabling the outcomes of today’s digital era. As computing power becomes more pervasive,


so does the need for security to address the increased cyber risk. It is only a matter of time


before the next smart coffee machine makes the news for being held ransom by a cyber attack. Even though the ransom will be negligible, the incentive to attack a coffee machine exists because there is a low barrier to facilitate a successful attack, which makes performing the attack worthwhile. Consider the effort one might put toward holding an entire factory ransom. The potential reward increases significantly, as does the incentive for the attacker. Only relying on firewalls for critical


infrastructure is no longer effective with the converged IT and OT networks. The assumption should be made that someone has already gained access to the factory network. For this reason, device integrity and robust authentication protocols must be in place for all connected devices. Network connected devices need to be able to


authenticate with other devices on the network, establish shared keys, perform signatures on data, and validate data being received. There are standard ways for doing this, but the factory presents constraints that can make adapting security challenging for some use cases. For instance, the sensitivity to time in motion


control applications can create latency tolerances that make traditional means of doing device-to-device authentication prohibitive. Using standard public key infrastructure, devices will challenge each other to establish authenticity and exchange a shared session key using means such as TLS. This method has already been adopted to many


factory applications; however, this method is prohibitive in high speed motion-control applications as many devices need to interoperate together on a specific time scale. When latency requirements are measured in microseconds, the appropriate message authentication scheme must be selected to achieve the desired level of security and speed. The flow of data from the controller to all


As the cyber attack surface continues to shift, there is an increasing need for security solutions at the edge 12 ELECTRICAL ENGINEERING • DECEMBER 2021/JANUARY 2022


devices on the control loop need to be received congruently. One method to effectively enable this flow of data is to have all devices use the same shared session key. This requires a unique network configuration that allows devices to authenticate with a security manager that will provide the same session key to all devices on a designated security group. These keys will be exchanged using standard TLS and revert to alternative protocols during time critical operation.


electricalengineeringmagazine.co.uk


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40