search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Lasers & photonics


precision Laser


Linear accelerators, at one time only found in physics laboratories, are today used to focus high energy beams of electrons or X-rays on malignant tumours. Experiments using electromagnetic induction to reconstruct a 3D image of a box by processing the object in slices, laid the groundwork for the creation of the first CT scanner. Perhaps the most recent example of the application of physics to medicine is MALDI-TOF mass spectrometry. Dermot Martin speaks to Rainer Cramer, professor of mass spectrometry and bioanalytical sciences and head of biomedical, molecular and analytical chemistry at Reading University, to discuss the merits of the technology in medicine.


ince its arrival on the stage in the mid-1980s, matrix assisted laser desorption ionisation linked to mass spectrometry (MALDI-MS) has intrigued scientists and researchers. At first, many were uncertain if it could open doors to a better understanding of molecular structure because it seemed the biomolecules sparked from the matrix might be too small. German chemists Franz Hillenkamp and Michael Karas, who coined the term matrix assisted laser desorption ionisation (MALDI), were looking for a way to excite large biomolecules into the gas phase without fragmentation. They found there was a ceiling on how large the analysed molecules could be, with biopolymers such as proteins and carbohydrates being non-volatile due to their large and polar nature. The team had success


S 58


with the amino acid alanine when mixed with tryptophan, with the latter acting as a matrix to enhance the ion yield of the former on a metal plate irradiated with a 266nm pulsed laser. The Hillenkamp-Karas development of a matrix- based technique that could bind an analyte was a significant leap forward, but it was the work of a young electrical engineer working for the Shimadzu Corporation that is credited with thrusting the technique into the spotlight. In 1987, Koichi Tanaka used the “ultra-fine metal plus liquid matrix method” that combined 30nm Cobalt particles in glycerol with a 337nm nitrogen laser for ionisation. With this combination, Koichi was able to ionise biomolecules as large as 34,472 daltons, including the protein carboxypeptidase-A. It was a light-bulb moment, and


Medical Device Developments / www.nsmedicaldevices.com


LuckyStep/Shutterstock.com


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140