REACTOR DESIGN | SMRs
Above left: A graphic showing a NuScale SMR nuclear power plant Above right: Romania is a likely destination for early SMR installations
V the Emergency Planning Zone (EPZ) around SMR plant sites. The methodology can now be used to determine an EPZ for the NuScale SMR that provides the same level of protection to the public as the 10-mile radius used for existing US NPPs. NuScale Power Module (NPM) design is a small PWR
that can generate 77MWe of electricity and can be scaled to meet customer needs. The VOYGR-12 power plant is capable of generating 924MWe, and NuScale also offers four-module VOYGR-4 (308MWe) and six-module VOYGR-6 (462MWe) plants and other configurations based on customer needs.
SMR site selection in Romania In another first, an IAEA team of experts in August concluded a safety review of Romania’s process for selecting the site for a planned SMR, which it hopes could become the first SMR built in Europe. In May, the Romanian Government, through state company Societatea Nationala Nuclearelectrica SA (SNN), announced that it had chosen Doicesti, approximately 90 km northwest of the capital Bucharest, as the preferred site for the SMR, following an in-depth study conducted with a United States Trade and Development Agency grant. Romania is considering construction of a NuScale SMR. Romania requested the IAEA to conduct a Site and
External Events Design (SEED) review mission to assess the process that was followed in choosing the preferred site. This was the first ever IAEA SEED mission to look into site selection for an SMR. Romania documented the site selection process
in a preliminary SNN report, which will be followed by a preliminary Front-End Engineering and Design (FEED) study. The SEED mission said a limited amount of additional work is needed on sensitivity analysis and collection of confirmatory data for the FEED study, together with detailed recommendations on the minimisation of project risks. The team provided some
26 | December 2022 |
www.neimagazine.com
recommendations to support the optimisation of the site selection process and to minimise the risk that the following phases will identify important safety issues that may affect project implementation. In particular, the IAEA
team recommended that: ● All data be collected in a site selection summary report, according to the recommendations issued in IAEA Safety Guide SSG-35, to provide traceable support for later decisions and site evaluation phases.
● A suitable graded approach be applied for the specific technology selected for the SMR to be deployed, and in accordance with the potential radiological consequences of accidents, to meet overall safety objectives. Guidelines on the IAEA approach to grading were provided.
● A possible additional data collection phase for the selection process — through light investigation and monitoring — be implemented for the preferred site, as back-up solutions, focused on the most discriminating selection criteria.
“We invited the IAEA SEED mission because it is a priority for us to build in Romania a state-of-the-art SMR project, in full compliance with the highest safety standards,” said Cosmin Ghita, SNN CEO. “With the continued support of the IAEA, our experience in siting and building our first SMR can be used by other countries considering building SMRs. SNN is ready to share our experience on strategic and technical aspects of SMR deployment projects.” IAEA’s support for SMR development and deployment
will clearly be vital as more countries decide to adopt this new technology. The SEED mission shows that this support already goes beyond providing technical advice and organising discussion fora and consultations to undertaking practical activities. It is already playing an essential role in developing the detailed technical data, regulations and safety standards, which will be needed in the coming years. ■
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45