Left:
IAEA Director General Grossi visits the Carem25 site during a trip to Argentina
China’s first pebble-bed modular high-temperature
gas-cooled reactor (HTR-PM) was connected to the grid in 2021 – as unit 1 of the two-unit pebble-bed modular high- temperature gas-cooled reactor demonstration project at the Shidaowan plant in Shandong province. Both 250MWt reactors reactors have achieved criticality and will drive a single 210MWe turbine. High-temperature gas-cooled reactors use graphite as a moderator and helium as a coolant. The uranium fuel comprises 6 cm- diameter pebbles, each with an outer layer of graphite and containing some 12,000 four-layer ceramic-coated fuel particles dispersed in a matrix of graphite powder. The HTR-PM follows on from China’s HTR-10, a 10 MWt high- temperature gas-cooled experimental reactor at Tsinghua University’s Institute of Nuclear & New Energy Technology, which started up in 2000 and reached full power in 2003. A further 18 such HTR-PM units are proposed for the Shidaowan site. China is also constructing another SMR demonstration
project at the Changjiang NPP using its ACP100 (Linglong One) PWR. China announced the launch of the project in 2019 – it had been under development since 2010. The ACP100 preliminary design was completed in 2014. The major components of integrated PWR’s primary coolant circuit are installed inside the reactor pressure vessel. In 2016, the design became the first SMR to pass a safety review by IAEA.
Argentina’s Carem25 Argentina is completing construction of its Carem (Central ARgentina de Elementos Modulares) reactor - a domestically-designed and developed 32MWe PWR. As well as relying on passive safety systems, Carem’s entire primary coolant system is contained within the single self- pressurised vessel and uses free convection to circulate the coolant. This eliminates the need for devices such as pumps within the primary circuit and decreases the extent and complexity of the piping system required, as well as reduces the possibility of accidents involving a loss of coolant.
Before work was suspended in 2017, it was in line to be
the world’s first operating SMR. The government licensed it as a prototype in 2009. Development started in 1980 by the National Atomic Energy Commission (CNEA) and technology company INVAP and it was first announced in 1984. Progress slowed in the early 2000s but a 2006 government decree made the Carem25 programme a national priority. A second executive order in 2008 made the project directly responsible to the President of Argentina. Initially, Carem25 was expected to start up in 2017, but work was suspended in face of financial and technical problems. However work resumed in 2020. Argentina intends to build additional units for domestic use and export. CNEA has plans to build a 100MWe Carem reactor near Formosa in Argentina and a larger 300MWe version intended for export. In October 2022, IAEA Director General Grossi visited the Carem25 site during a trip to Argentina, where he also met with Agustin Arbor Gonzalez, President of the Nuclear Regulatory Authority (ARN), to discuss regulatory challenges and the essential role of having a regulatory basis for Argentina’s various projects, including Carem25.
US NRC certifies NuScale SMR Meanwhile, in August 2022, the US Nuclear Regulatory Commission (NRC) issued a final rule certifying NuScale’s small modular reactor (SMR) design for use in the United States. NRC said certification means the design “meets the agency’s applicable safety requirements”. An application for a NPP combined licence that references a certified design “will not need to address any of the issues resolved by the design certification rule”. Instead, the combined licence application and NRC’s safety review would address any remaining safety and environmental issues for the proposed nuclear power plant. The design certification “approves the NuScale reactor’s ‘design control document’, which is incorporated by reference in the final rule”. This is the first SMR design to be certified by NRC. Subsequently, in October, NRC also accepted NuScale’s methodology for determining the appropriate size of U
www.neimagazine.com | December 2022 | 25
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45