search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
NUCLEAR HYDROGEN | SPECIAL REPORT


become increasingly fragmented, and the availability of regional resources will largely determine both the primary production technology and the final cost of hydrogen. Furthermore, as nuclear power is both dispatchable and


large-scale, there are additional opportunities associated with industrial co-location. This approach would minimise infrastructure costs for hydrogen storage, transport and distribution. Indeed, the report estimates infrastructure costs for a nuclear-based value chain at around US$ 0.16 per kg H2


for a 500 MWe system that is meeting the continuous demand that might be expected from a large-scale industrial complex. When a variable output renewable production is considered in a similar application, the NEA estimates these additional costs at around US$0.77 per kg H2


costs combined, nuclear stands out as a competitive solution. In fact, says the NEA, “at a given electrolyser scale, the


larger volume and continuous production of a nuclear- based hydrogen value chain allow for a cost-efficient deployment of all infrastructures.”


Putting policy in place Although the market fundamentals are positive and the long-term prospects clear, there are a number of challenges that must be addressed if nuclear power is to achieve its potential. Technology, policy and regulatory barriers remain major obstacles to realising this long-term expansion in the hydrogen economy. It requires ambitious policy initiatives to support hydrogen deployment and to engage stakeholders in the short term. The success of research, development and demonstration


programmes, a strong and constant political commitment, and the ability of stakeholders to set and agree upon technical and regulatory frameworks over hydrogen handling and trading are key for future hydrogen deployments, the NEA says. The NEA outlines several policy recommendations that must be acted upon to realise industrial scale pink hydrogen. For example, they argue that as an immediate first step it is essential to demonstrate that large-scale, low-carbon water electrolysis is a viable alternative to the incumbent carbon-intensive hydrogen production technology. They further indicate that ambitious demonstration initiatives are required to answer the economic, engineering and regulatory questions raised by large-scale low-carbon hydrogen production plants and value chains, whether those systems are based on renewables, current Generation-III light water reactors or a combination thereof. The NEA also recommends developing policy frameworks


that allow the broad-based production of low-carbon hydrogen. To achieve this, they suggest developing reference net zero pathways which underline the importance of rapidly scaling up the production of low- carbon hydrogen. “Restricting energy sources to produce low-carbon hydrogen will limit deployment in the short term and lead to additional system costs in the longer term,” the NEA notes. A further recommendation is making sure that the full


cost of hydrogen production and delivery is taken into account by estimating the cost for storage, transformation, transport and distribution, which “can represent sizeable additional costs for hydrogen delivery”. It is essential to take


into account the entire value chain requirements to assess a project’s overall business case and to design cost-efficient infrastructure, they note. Finally, the NEA recommends that over the mid-term,


research and development to improve the efficiency of hydrogen production should be increased as “methane pyrolysis or water thermochemical cycles, possibly in conjunction with Generation IV reactor technologies, are promising low-carbon options that can reduce the primary energy requirements for hydrogen production.”


. As a result, taking the entire value chain and production


Action on nuclear hydrogen Given the scale of opportunity there is already growing interest worldwide in nuclear-generated hydrogen. In the UK, for instance, it has recently been reported that chemicals giant INEOS is holding exploratory talks with Rolls Royce that could see SMR technology producing the hydrogen needed to decarbonise the huge Grangemouth refinery in Scotland. There are also positive policy developments along the lines suggested by the NEA. This year the state government of North Rhine-Westphalia in Germany confirmed €770,000 in funding to support a feasibility study for the construction of a 100 MW water electrolysis plant for the production of green hydrogen at the INEOS site in Köln. INEOS has previously revealed plans for a €2bn package of green hydrogen projects across Europe. Meanwhile, the landmark Inflation Reduction Act recently signed by US president Joe Biden allocated US$9.5bn for clean hydrogen production, with US Department of Energy assessments suggesting that nuclear energy could potentially produce up to 15% of the total national demand. The central conclusion from the NEA’s latest study is that


nuclear energy can produce low-carbon hydrogen at large scale and at competitive costs. Fundamentally though, the sheer scale of the future hydrogen economy represents a huge opportunity for nuclear power. Electrolysis processes typically require around 50 kWh of electricity to produce 1 kg of gas. Given current hydrogen production of about 90 million tonnes, decarbonising this alone would require something of the order of 4500 TWh of low-carbon electricity every year. The IEA forecasts that by 2030 around 80 million tonnes of hydrogen will be produced annually through electrolysis. This represents an additional electricity demand of 4050 TWh, or approximately 1.5 times the current annual demand for the whole of Europe. Scaling this hydrogen production up to fully 500 million tonnes inevitably means increasing dedicated clean energy production by several orders of magnitude. These figures make clear both the scale of the opportunity and the enormity of the challenge. In its latest forecast for global nuclear capacity, the IAEA


has increased its high case scenario by 10% compared with only a year ago and in 2021 the Agency had revised its up annual projections for the first time since Japan’s Fukushima Daiichi nuclear disaster a decade previously. In its high development scenario, the IAEA now anticipates world nuclear generating capacity more than doubling to 873 GWe by 2050, compared with current levels of around 390 GWe. As IAEA Director General, Rafael Mariano Grossi, said: “We are at a defining moment in the world’s transition to a more secure, stable and affordable energy future.” Nuclear generated hydrogen could be a big part of that clean energy future. ■


www.neimagazine.com | December 2022 | 17


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45