REACTOR DESIGN | SMRs
Above left: The IAEA SMR web portal acts as a central repository of information Above right: The Akademik Lomonosov floating power unit is equipped with two KLT-40S pressurised water reactors
V Under the NHSI, IAEA will bring together decision
makers from governments, regulators, designers, technology holders, operators and other international organisations under two separate complementary tracks: one for technology holders and operators and another for regulators. These tracks, facilitated by the Agency, will then join up in 2024 under an IAEA framework to further advance the initiative, culminating in roadmaps with concrete action plans. “For industry, the initiative will seek to provide a list of
concrete actions and milestones for technology holders and operators to develop more standardised industrial approaches for design, manufacturing, construction, commissioning and operation of SMRs as well as generic user requirements and criteria,” said Aline des Cloizeaux, Director of the IAEA Division of Nuclear Power.
SMR safety standards Even before these recent development, IAEA had intensified its work in providing support to member states in the development and licensing of SMRs. IAEA is also reviewing the applicability of IAEA Safety Standards to SMRs and has supported, since 2015, the SMR Regulators’ Forum, in which national regulators discuss approaches to this new technology. In addition, IAEA has completed the review of over 60 safety standards to guide their application to a range of SMRs and innovative technology lifecycles and recently published a new TECDOC – “Approach and Methodology for the Development of Regulatory Safety Requirements for the Design of Advanced Nuclear Power Reactors - Case Study on Small Modular Reactors”. It proposes a stepwise, technology neutral approach and methodology for the development and adaption of regulatory safety requirements for the design of advanced nuclear power reactor technologies, with a particular focus on SMRs. It aims to support decision making by national regulatory authorities, and is based on integrated risk-informed, objective-oriented, performance-based approaches. The publication identifies and exemplifies the
24 | December 2022 |
www.neimagazine.com
key design features of SMRs to be considered important for the process of development or updating the regulatory safety requirements. The information presented is based on the experience provided by technical experts from member states with experience of regulatory requirements for advanced nuclear power reactor technologies, and particularly for SMR designs.
Russia’s SMRs The first SMR units have already been deployed in Russia and China. Russia’s Akademik Lomonosov floating NPP is already
supplying both power and heat to the Arctic town of Pevek in Chukotka. It was connected to the grid in December 2019, and at the end of May 2020 began commercial operation. The FNPP comprises a dedicated system of coastal infrastructure to support the Akademik Lomonosov floating power unit, which is equipped with two KLT-40S pressurised water reactors (PWRs), previously used to power icebreakers, with capacity of 35MWe each. The power capacity of the FNPP is 70MW, the heat capacity is 50 Gcal/h. Russian regulator Rostekhnadzor has issued a 10-year licence to nuclear utility Rosenergoatom to operate the Akademik Lomonosov until 2029. It was the lead project of a series of mobile transportable low power units to be sited in the Far North and the Far East to provide energy to remote industrial enterprises, port cities and gas and oil platforms. Subsequent units will have upgraded larger RITM-200
reactors each with a capacity of 50MWe. China (under contract to Russia) has begun laying the keel of the hull for the first of these upgraded FNPPs. It is due to be delivered to Russia by the end of 2023 for the completion and installation of the reactors and other equipment, which is already being manufactured by Russia’s Atomenergomash. This is the first of four planned FNPP units intended for operation in the waters of Cape Nagleingyn in Chukotka. Russia is also planning to construct a ground-based SMR in Yakutia using an adapted version of the RITM-200. The plant is scheduled to be launched in 2028.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45