search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Waxholmsbolaget Yxlan Ice-class hybrid passenger ferry provides year-round travel in the Stockholm Archipelago.


Safety has other considerations as well; there is disaster safety at the cell level, and then there is safe use of batteries. We designed a BMS that is inherently focussed on protecting the ship, the battery system and the cells. This is done at its core by monitoring the voltage and temperature of every individual cell in the system, and then balancing the performance of the vessel within the safe operating principals of the ship.


There are two different ways to design a BMS; one that is ideal for a fully electric ship and one that suits hybrid applications. While both in principal will give the operators choices in the event of a battery failure, in a fully electric ship, the safe operation of the vessel becomes the guiding principal of the decision making of the BMS and Power Management System (PMS). In a hybrid application, the batteries can become the focus of the performance of the PMS as the vessel has alternative propulsion systems and is not totally reliant on the battery for operation. Once we define the type of application as either hybrid or electric, we can optimize the operational logic of the BMS as it pertains to the PMS/ operator decision making criteria.


Another critical element of safety in design has been the inclusion of contactors in our building block modules. Basically, as we are building DC voltage systems that range from 300-1500VDC, the risk of personal injury in transportation and service are very high. For example, a 1500 VDC arc flash can permanently disable a technician. By adding contactors in the individual battery modules, we eliminate voltage at the terminals until the system is fully engaged and the BMS can approve that all cables are correctly sequenced and protected. There is no voltage or


power on the terminals as long as they are open. We also reduce the risk by isolating the building blocks as single units no matter how large the overall size. The element of crew safety of our technicians and the operators of the vessels cannot be overstated in terms of benefit to our customers. We can now train ships engineers and crew to do maintenance on the batteries, we don’t need to bring in specially qualified electricians to do basic maintenance. This design decision was not free, but it is the right way to go to improve overall safety for our customers ships.


SPBES patented eVent system showing path of gas extraction in a single cell thermal event.


The Report • March 2020 • Issue 91 | 61


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104