Sikorsky Applies the MATRIX
Since 2013, Sikorsky has been conducting research into ‘optionally piloted vehicles’ (OPV) using its Matrix Technology. The goal of Matrix is to reduce human pilot workload by having a virtual co-pilot execute flight plans on the human’s behalf, and to fly a helicopter autonomously without a human on board. The Matrix system also allows helicopters to be remotely controlled by human pilots; again with the option of switching to autonomous flight as required.
“Sikorsky is currently performing on Phase 3 of the DARPA ALIAS (Aircrew Labor In cockpit Automation System) program and an internally funded program to advance autonomy technology for increasing levels of autonomy for rotorcraft and fixed-wings,” said Igor Cherepinsky, Sikorsky’s director of autonomy. “ALIAS allows for zero, one, or two pilots to operate an aircraft. These programs
provide for optionally piloted systems that enable the integration of manned/unmanned teams. We are integrating this system into a number of platforms, to include UH-60.”
Given its support for autonomously piloted helicopters, Matrix would allow “teaming between human and machine either in one platform or as a team of manned and unmanned platforms,” said Cherepinsky. “Without getting specific, all emerging military requirements have this concept.”
Of course, creating MUM-T systems won’t be easy. “The biggest challenge will be creating a robust operator interface allowing for agile operation of multiple assets and comms links for multiple vehicle command and control,” Cherepinsky said.
“We believe that autonomy will be incrementally added to helicopter operations in much the same way as today’s cars,” he continued. “As capabilities become available, they will be added for both optionally piloted and autonomous operations, including the teaming of manned and unmanned systems.”
rotorcraftpro.com
77
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90