search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Tables, formulae and equations


The following example shows the same relationship represented in a table and as an equation for solving the missing variables.


Worked examples


Look at the table of values below: x


y


−2 −7


−1 −5


0 −3 1 −1


2 1


12 m


n 27


1 Describe the relationship between the y-values and the x-values in the table in the form: y = …


2 What is the value of m? 3 What is the value of n? 4 What do you notice about the y-values in the table? Is it possible to find an x-value for which the corresponding y-value is an even number?


Solutions


1 If x = −2, then y = −7, so: −7 = 2(−2) + c ∴ −7 = −4 + c ∴ c = −3 ∴ y = 2x − 3


2 y = 2(12) − 3 = 21, so m = 21


3 27 = 2x − 3 ∴ 2x = 30 ∴ x = 15, so n = 15


4 The y-values are all odd numbers. Let y = 2: 2 = 2x − 3 ∴ 2x = 5 ∴ x = 2,5. So for x = 2,5; y is an even number.


There is a constant difference of 2 between successive y-values. The equation for y will be of the form: y = 2x + c.


Substitute the value of x = 12 into the equation: y = 2x – 3.


Substitute the value of y = 27 into the equation: y = 2x – 3.


The y-values are all odd numbers. Choose any even value for y and solve for x.


Unit 4: Equivalent forms


133


CHAPTER 4


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43