search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Worked examples


The patterns in the previous example are defined by the general rules below. Use each rule to calculate the value of the 10th term in the pattern.


1 Tn = 2n − 1


Solutions 1 T10 = 2(10) − 1 = 19 2 T10 = 1


_____ 10 + 2 = 1


___ 12


3 T10 = 102 − 1 = 99 Exercise 2


1 Use the rule: “any term in this pattern is one-third of the previous term” and write down the first four terms of each pattern below, if: 1.1 the 3rd term is 27


1.2 the 2nd term is 6


1.3 the 5th term is 1 2 For each of the number patterns below, work out the rule for the nth term. Use your rule to calculate the 10th term of the pattern.


2.1 2; 5; 10; 17; … 2.3 99; 97; 95; 93; …


2.5 −100; −97; −94; −91; … 2.4


2.2 −200; −150; −100; −50; … 4 ; …


1; 1 __


2.6 a + b; 2a + b2; 3a + b3; 4a + b4; …


2 ; 1 __


3 ; 1 __


3 The numbers below have an interesting pattern in common. 89 = 81 + 92 135 = 11 + 32 + 53 598 = 51 + 92 + 83 2 427 = 21 + 42 + 23 + 74 2 646 798 = 21 + 62 + 43 + 64 + 75 + 96 + 87


3.1 Check the calculations for each number above. 3.2 Write down the rule for the pattern in these numbers in your own words.


3.3 Test each of the following numbers to see whether they also obey the rule above: 3.3.1 175


3.3.2 253


4 Look at the table below: Number


Square 101


11 112 = 121 10 201


1 001 1 002 001 Cube


113 = 1 331 1 030 301


1 003 003 001 3.3.3 518 Fourth power


114 = 14 641 104 060 401


1 004 006 004 001 3.3.4 1 306 2 Tn = 1


____ 2 + n , or 1


____ n + 2 3


Tn = n2 − 1


Calculate the value of 2n – 1 for n = 10. Calculate the value of 1


____ n + 2 for n = 10.


Calculate the value of n2 – 1 for n = 10.


126 Chapter 4: Patterns, functions and relationships


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43