This page contains a Flash digital edition of a book.
all major automotive companies and their suppli- ers worldwide have adopted fi ber lasers to meet their very demanding production requirements. The industry has strived to manufacture lighter weight and safer vehicles. This has resulted in numerous applications for laser processing. The increasing utilization of high-strength steels and aluminum into vehicle designs and the introduction of lightweight automatic transmissions has proven to be fertile ground for the adoption of fi ber-laser technology. The fi ber lasers used in automotive production are typically 2–6 kW with the power dependent upon whether it is for cutting or welding. Applications include the welding of tailored blanks, cutting and welding of high-strength steel, welding of air bag components, welding of aluminum door inners and frames to mention a few.


ity has easily justifi ed this shift. The company Mega- fab (Rockford, IL), demonstrated a cutting machine with a 12-kW IPG Photonics fi ber laser, cutting 5/8” (16-mm) material at over 500 ipm (12,700 mm/min) at FABTECH. Of particular note is that fi ber-laser technology can now outperform plasma in cutting that thickness. The major portion of the welding market utilizes


IPG Photonics sales growth.


The two- and three-axis cutting market has made a major shift away from CO2


lasers to fi ber-laser


technology. At the 2015 FABTECH show in Chicago, 12 companies displayed their cutting machines us- ing IPG multi-kilowatt fi ber lasers. These lasers have


demonstrated higher processing speeds than CO2 technology, at a lower cost with the ability to cut materials such as copper and brass not possible with CO2


technology. The trend in the cutting industry is


toward higher fi ber-laser power as the builders in- crease the speed of their machines and the thickness capability. Standard machines have moved up from 2-kW power, with 6-kW machines becoming more common. The speed increase and thickness capabil-


LF20 AdvancedManufacturing.org


fi ber lasers from the 2 to 6-kW power levels and are employed for welding, brazing and cladding. These lasers, usually integrated with robots, are employed on applications too numerous to mention as they are deployed in virtually all disciplines of manufactur- ing. The growth in this sector has been attributed not only to the replacement of legacy technology but also from a switch from MIG and TIG welding sys- tems. There is also a market expansion toward higher fi ber-laser power. This has been somewhat fueled by decreasing cost of ownership but more so by the increased awareness of the potential that high-power fi ber lasers offer in the welding of thick structures. With 10–100 kW of continuous power available, these lasers have gained wide acceptance in the oil and gas and aerospace industries as well as various R&D labs around the world dedicated to investigating the advancement of welding technology. Several of these super-high-powered continuous wave lasers have been implemented on outdoor mobile material processing applications


not possible before compact, electrically effi cient fi ber lasers were available. The fi rst production US-installed 50-kW system was delivered by IPG in the fall of 2015. The system, dedicated to deep penetration welding, is producing high-quality welds in excess of 25 mm in a variety of materials includ- ing copper. The fi rst 100-kW fi ber laser was shipped to the Asian market during 2014. The 100-kW is launched from a 300-μm feed fi ber and produced weld penetration depths in excess of 125 mm. These super-high-power lasers will continue to encroach on applications usually dedicated to electron beam welding machines with the added advantage that they do not require a vacuum.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150