search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
FEATURE DISPLAYS


Displaying touchscreen technologies


Dr Andrew Morrison, technical director at


Zytronic, takes a look at how new technologies are widening the opportunities for touchscreens


T


ouchscreens are becoming more widely adopted. The most popular


technology, however, is Projected Capacitive (PCAP), which is not one but multiple technologies. While there are a growing number of ways to create a touch sensor capable of detecting the location of one or more contacts, the main difference is the conductive material used within them. The three main material technologies used currently are: Copper Micro Wires, Silver Metal Mesh and Silver Nanowires. So let’s compare these based on four key parameters.


ECONOMICS When considering the cost of touchscreens, some of the key issues are initial tooling costs and ongoing material requirements. Technologies that can be directly written to the substrate materials without a mask require little in the way of tooling and can be produced more cheaply in low volumes. If masks or other tooling are required, then this limits the ability to produce screens of different sizes flexibly in low volume, although it does have the potential to offer reductions in high volumes on standard sizes. In terms of tooling, copper micro wires


offer flexibility – the electrode can be written directly to the substrate, with no


Figure 1: 22” Zytronic Multi touch 10µm wire design


Figure 2: 22” Metal mesh 4µm design


Figure 3: 22” Metal mesh & Multi touch designs overlaid for comparison


Figure 3


mesh materials are patterned at source, so the size of sensor needs to be specified upfront. This leads to tooling charges which can range from around $10K to $20K per sensor design depending on screen size.


RESISTANCE


Touchscreen resistance is a key factor in determining sensitivity to touch, or ‘signal to noise’ ratio (SNR). Higher resistance materials limit the amount of current flowing through the conductors, making it harder to correctly pick out a touch event from surrounding ambient interference (EMI) coming from the display, power source or other surrounding electronics.


CUSTOMISED BI-STABLE DISPLAYS AVAILABLE


Custom displays using Bi-stable technology are now available from GTK. The display technology is similar to e-paper technology, in that it retains the image on the display screen without consuming power. However, while e-paper is limited to a black and white, Bi-stable technology uses printed fixed colours – blue, red and green are currently available as standard, with others on request. The typical configuration is for two colours to be used: one for text and the other for the contrasting background, but it is possible to add more colour layers to the display background if required. In addition, this display technology does not require a backlight, uses compact industry standard batteries and offers benefits such as sunlight readability, ultra-wide viewing angles and high resolution graphics. However, Bi-stable technology is limited to simple custom segment, graphic


or dot-matrix displays. It also has a marginally slower response time (image refresh rate) than more sophisticated displays, such as TFTs. It is also susceptible to UV light, although this can be alleviated by using protective covers.


GTK www.gtk.co.uk


lasers, masks/chemicals/etching or tooling needed. Silver nanowires can be customised to a degree, via laser ablation, but then additional processing is required to link the conductors at the borders to the controller. By contrast, silver metal


Figure 2


to around 65”. Copper micro wires offer the lowest resistance at ~5Ω per square or less, and can be used to create touchscreens measuring over 100”. Furthermore, the extremely low resistance provides the best signal to noise ratio, resulting in touchscreens that are capable of detecting touch


through very thick overlaying glass and even gloves.


VISIBILITY All discrete overlay projected capacitive touch technologies involve introducing some material element between the user and the screen, which will make some optical difference, however small, to the image. With Copper micro wire based technologies the grid of 10µm conductors can be visible, particularly when the display is off. That said, light transmission is excellent and in the range of 90% before any anti reflective treatments are applied. In contrast, silver nanowire and metal mesh technologies enable the creation of slightly less visible conductive tracks (metal mesh in the 5-10µm range), however, nanowires can produce a slight colour cast or haze over the whole screen, and a base light transmission of around 85%.


THE BEST COMBINATION There remains no such thing as the ‘perfect’ conductive material for projected capacitive touchscreens – and designers should always look for the best combination of performance, optics, durability, scalability and reliability to suit their touchscreen application.


Zytronic http://zytronic.co.uk 22 OCTOBER 2016 | INSTRUMENTATION / INSTRUMENTATION


Clearly, this resistance becomes more of an issue with larger touchscreens. ITO (indium tin oxide) has generally been limited to smaller touchscreens due to its relatively high resistivity of ~100Ω per square. As a result, most touchscreens using this material are smaller than around 22”, beyond which there are significant performance limitations. Silver nanowires have a better


resistance than ITO and can be used up to around 42”. Silver metal mesh has a lower resistance and has been used


Figure 1


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270