search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
NEWS // MOUSER NEWS // FEATURES // NEW PRODUCTS


Reducing idle losses while meeting IEC 62368-1


Edward Ong, product marketing manager at Power Integrations, explains how to reduce idle losses while meeting the latest safety requirements in IEC 62368-1


In equipment ranging from televisions and computers to microwave ovens, fridges, air conditioning systems and printers, every milliwatt saved when the device is waiting idle between operations is vital. A significant amount of idle power is consumed by the power supply, especially in the EMI filter section. A good example is the energy consumed by the safety discharge resistor placed across the X capacitor. Another contributor to losses is any high-voltage resistor divider network, such as a feedback resistor network. These networks still operate during standby mode and their impact on power consumption can be significant. To calculate this impact,


M


consider a 1 MΩ discharge resistor. If 230 VAC RMS is applied across it, the loss is equal to the square of the RMS voltage across the resistor divided by the resistor value - in this case 53 mW. This is a common scenario for a 90 W notebook computer, for example. In a 200 W power supply where larger X-capacitors are required, the loss can go up to around 125 mW.


One of the standard circuit


techniques to eliminate such idle losses is to open a path during standby mode using an


16 www.mouser.com January 2017


anufacturers today are under pressure to improve energy efficiency and finding ways to reduce system losses when the system is idle (no load) has become an important consideration.


electronically-controlled switch which takes the network offline. ICs are available to perform this function, such as the CapZero-2 two-terminal X capacitor discharge IC from Power Integrations. These devices are rated at 1 kV and can readily withstand surge voltages. CapZero-2 X capacitor discharge ICs are easy to design in and can even be retrofitted into old designs, such as a 200 W power supply in an appliance. The standalone devices can be simply dropped into the circuit, in series with the discharge resistor on the board and losses are immediately reduced. CapZero-2 ICs are already safety certified so all that is needed is an update to the safety file, and one part covers a broad range of X capacitor values. When AC voltage is applied, it blocks current flow


in the X capacitor safety discharge resistors, reducing the power loss to less than 5 mW at 230 V AC. When AC voltage is disconnected, it automatically discharges the X capacitor by connecting the series discharge resistors. This operation allows total flexibility in the choice of the X capacitor to optimise differential mode EMI filtering and reduce inductor costs, with no change in power


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30