Comment
Despite the many arguments against, Dr Tim Lodge of Agrostis Turf Consultancy, says that artificial sports surfaces, and particularly 3G, appear to be the preferred choice when it comes to new builds. In this article, he argues the case for natural turf and suggests that similar testing data to that of artificial surfaces should be readily available so that an informed decision may be made
L
ike it or not, there is a profound conflict between natural and artificial sports surfaces in the UK and, right now, it seems to me that the artificials are winning. The key
sporting bodies have developed a predisposition towards artificial turf which has extended into the culture of sport itself. Even very small clubs or schools leap at the chance of installing, for example, a 3G pitch with fencing and floodlighting, and increasingly view anything involving natural grass as somehow inferior. I don’t wish to go into the many arguments
against artificial turf surfaces, though these are many and varied. They include questions about general environmental soundness, their contribution to the increasing ‘urbanisation’ of our landscape, the diminished flexibility in terms of provision, their long term economic viability, social inclusiveness and overall reach, aesthetic considerations and so on. What I am concerned about is how, in the face of so many negative factors in relation to artificials, natural turf proponents seem unable to stand up for themselves in similar terms. Considering playing quality in relation to specific individual sports, artificial surfaces are undoubtedly now of an extremely high standard. Interestingly, the motivation behind much of their development has tended to be, for most sports, how best to emulate the properties of the ‘best’ of natural turf. It would seem appropriate, therefore, to consider how these ‘best’ examples are actually achieved.
Getting technical
From a playing quality point of view, artificial pitches are outstanding
Any discussion about artificial surfaces tends to become very technical very quickly. This may be because it is in the non-technical areas, mentioned above, that the case for artificial sports surfaces is at its weakest. Advocates of artificial surfaces prefer to locate the debate in areas where they are
most comfortable. It is also the case that the technical area is where the arguments for natural turf sports surfaces are at their most feeble. This weakness in the natural turf technical argument is what I am concerned with here. It is in relation to the built environment
that the technicalities of artificial sports surface design and construction tends to be examined in greatest detail. This falls under the variably watchful eyes of the planning authorities, whose concerns must be addressed prior to any particular installation. Of particular concern is flood risk and storm water management, and it is in relation to the management and control of rain water that the technical distinctions between natural and artificial turf are perhaps most pronounced. Put simply, there is a much greater
understanding of and, hence, greater capability to design successfully for the behaviour of water in artificial sports surfaces than in natural turf. Criticism of natural turf invariably comes down to its performance during the winter when large amounts of water often cause such surfaces to become unplayable, sometimes for months on end. Solutions put forward, like ‘improve drainage’, while intuitively obvious, don’t always achieve the wished for results. Thus, natural turf is given a bad name due to the generally poor understanding of what actually governs its behaviour and performance. This varied response to improvement
techniques in natural turf is due, in my opinion, to a collective lack of understanding of the very much more complicated circumstances surrounding the behaviour of water in natural soil with grass growing on it. This highlights a failure in relation to research priorities over the last two decades or so and the lack of appropriately qualified and experienced experts in the field. It is an extremely complicated area that requires a
PC AUGUST/SEPTEMBER 2016 I 15
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156