This page contains a Flash digital edition of a book.
machine can generate safely. To improve the precision of these cuts, the company is now using shrink-fit toolholders which keep the total runout of carbide tools to within a few tenths, which is very important for assuring clearance toler- ances for precision punches within the die system. Excessive forces on the tool are eliminated because the soft-


ware thinks ahead to detect conditions that will result in the tool getting buried in the material (e.g. hitting a corner) and causing it to break or damage the part. Based on this foresight, the program automatically adjusts feeds and speeds to avoid these overloads. The dynamic toolpath algorithms are continually looking ahead and comparing options to decide such things as where to enter the part, where to go for the next cut and when to lift ever so slightly from the part during a dwell so that heat build- ups are avoided. The dynamic toolpaths allow CNC equipment to run safely


while cutting the hardest steel. They have helped reduce tool wear and tooling costs. The cost of prematurely worn and broken tools is always a concern. However, the more important advantage of this approach has been the ability to reduce the number of tool changes required for better equipment up-time. LH has been introducing lighter duty CNC equipment with higher spindle speeds to its manufacturing operations. Some of these operate at spindle speeds up to 30,000 rpm. Dynam- ic toolpaths have improved productivity by as much as 100%. However, when the company began using dynamic toolpaths, there were a significant number of older 40-taper machines only capable of spindle speeds up to 7500 rpm. The dynamic


paths allowed these mills to run smaller diameter tools at the highest feeds and speeds possible without placing excessive stress on tools and the less rigid spindles. Productivity on these machines went up substantially. “This advanced computer-aided manufacturing technology is allowing us to get a higher volume of work done faster. Until the last few years, if we could complete the detail parts for a die in a week or a week and a half, we would be doing well. Recently, there have been times when we have produced two or three dies in a single week. Our customers have very tight delivery expectations and we are finding ways to give them what they need,” Neuenschwander said. ME


For more information from Mastercam/CNC Software, go to www.mastercam.com, or phone 860-875-5006.


Contour Measurement of Brake Parts Faster, Easier


A


t Advics Manufacturing Ohio Inc., a CNC setup has dramati- cally transformed contour measurement of automotive brake


components from a 45-minute specialist’s task to a 3 1/2-minute generalist’s job. Founded in 1987 and located about 40 miles northeast of Cincinnati, Advics Manufacturing Ohio employs more than 500 people dedicated solely to production of disc brake calipers and ABS units. These are supplied to automakers around the world for installation in more than 20 different vehicle models by the company, which has a reputation for being a quality-leader for brake products made in North America.


IT INFRASTRUCTURE


IT INFRASTRUCTURE


SOFTWARE & SERVICES


SOFTWARE & SERVICES www.rittal.us www.rittal.us August 2013 | ManufacturingEngineeringMedia.com 47


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132