This page contains a Flash digital edition of a book.
TechFront New Developments in Manufacturing and Technology Honing Technology Conquers Aerospace H


oning was invented more than 70 years ago to de- glaze cylinder bores in early automobiles. Since then, conventional honing has been routinely used to create crosshatch surface finish in bores to enhance oil retention to lubricate and seal sliding/mating parts like pistons, plungers and shafts. New technology has made it a good fit for the most advanced aerospace re- quirements for ultra-precise machined parts. “Computer controls, new tool designs, new abrasives, integrated air-gage part mea- surement and servo-driven tool feed systems and spindles enable new honing machines to produce part bores with 0.000010" [0.00025- mm] accuracy and crosshatched surface finishes targeted to a very narrow range,” said Dennis Westhoff, business development manager, Sunnen Products Co., (St. Louis, MO). “The aerospace industry is constantly tightening the requirements for parts to achieve lighter weight and, particularly, great- er performance from end products—higher power densities, more precise control, tighter sealing, less hysteresis, noise and vibration. “This new generation of honing machines is enabling aerospace suppliers to meet a host of challenges for parts that include ram-air turbine components, fuse pins, turbine hubs/disks, landing gear, hydraulic valve sleeves, accumulators and pumps,” said Westhoff. “Flight control systems are a good example. The ultra-high-performance hydraulic valves in these systems are about 125–250-mm long with a bore of about 12- mm diameter, including numerous lands and crossholes. Honing is used to produce bore diameter tolerances of 0.00025–0.0005 mm. “In fact, some parts are produced to tolerances beyond the measuring capability of many gages. In addition to sizing and fin-


ishing the bore, honing perfects the roundness, straightness and finish of the bore. These valves operate with a clearance of 0.005 mm or less between the valve body and match- ground plunger. The same holds true for the moving parts in the pumps that power these systems. As operating clearances


Piston pumps used in hydraulic flight control systems have clearances of 0.005 mm between moving parts, requiring ultra-precise bore size, roundness and straightness. Piston pump bodies are shown in a multispindle Sunnen honing machine which can control bore size to within 0.00025 mm. The machine is equipped with air gaging stations between spindles.


May 2013 | ManufacturingEngineeringMedia.com 35


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184