This book includes a plain text version that is designed for high accessibility. To use this version please follow this link.
Researcher at Northwest A&F University, China, demonstrated how the DNA/RNA native structures are disrupted by the fullerene (C60) in a physiological condition. The nanoparticle was found to bind with the minor grooves of double-stranded DNA and trigger unwinding and disrupting of the DNA helix, which indicates C60 can potentially inhibit the DNA replication and induce potential side effects. They used an examination of 2254 native nucleotides with molecular dynamics simulation and thermodynamic analysis.


Xue Xu, Xia Wang, Yan Li, Yonghua Wang, Ling Yang: A large-scale association study for nanoparticle C60 uncovers mechanisms of nanotoxicity disrupting the native conformations of DNA/RNA, In: Nucleic Acids Research, Volume 40, Issue 16, September 2012, Pages 7622- 7632, DOI:10.1093/nar/gks517: http://dx.doi.org/10.1093/nar/gks517


A multidisciplinary team of researchers from UCLA and other universities is poised to help turn science fiction into reality – in the form of some of the world‘s tiniest electromagnetic devices – thanks to a major grant from the National Science Foundation‘s Engineering Research Center (ERC) program.


The grant, worth up to $35 million over 10 years, will fund a new center headquartered at UCLA‘s Henry Samueli School of Engineering and Applied Science that will focus on research aimed at developing highly efficient and powerful electromagnetic systems roughly the size of a biological cell – systems that can power a range of devices, from miniaturized consumer electronics and technologies important for national security to as-yet unimagined machines, like nanoscale submarines that can navigate through the human blood stream. UCLA‘s partners in the new center include UC Berkeley, Cornell University, Switzerland‘s ETH Zurich and California State University, Northridge.


Image: TANMS researchers have used an electric field to turn a magnetic field on (left) and off (right). They measured this effect in a ferromagnetic thin film on top of a piezoelectric substrate, using a magnetic force microscope. At left, the dark lines represent magnetic north poles emanating from the ferromagnetic thin film, and the light lines represent magnetic south poles. At right, an electric field is applied to the piezoelectric substrate, and the lines vanish, meaning that the magnetic field is no longer present. The researchers will expand on this ability to control magnetic fields in nanostructured ferromagnetic elements in the work of the TANMS Nanosystems Engineering Research Center. TANMS seeks to integrate newly discovered large-effect multiferroic materials into electromagnetic devices, thereby enabling chip-scale generation of magnetic fields through the simple application of a voltage. Their research could lead to transformations in memory systems, antenna systems, and nanomotor systems. © Ray C. J. Hsu, Mechanical and Aerospace Engineering, UCLA


http://www.engineer.ucla.edu/

Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93