This book includes a plain text version that is designed for high accessibility. To use this version please follow this link.
A team of researchers at the University of Pennsylvania has found a way to generate a kind of “structural color” that has the added benefit of another trait of butterfly wings: super-hydrophobicity, or the ability to strongly repel water. The research was led by Shu Yang, associate professor in the Department of Materials Science and Engineering at Penn’s School of Engineering and Applied Science.


Jie Li, Guanquan Liang, Xuelian Zhu, Shu Yang: Exploiting Nanoroughness on Holographically Patterned Three-Dimensional Photonic Crystals, In: Advanced Functional Materials, Volume 22, Issue 14, Pages 2980-2986, July 24, 2012, DOI: 10.1002/adfm.201200013: http://dx.doi.org/10.1002/adfm.201200013


A critical review in Chemical Society Reviews: Yuanjin Zhao, Zhuoying Xie, Hongcheng Gu, Cun Zhu and Zhongze Gu: Bio-inspired variable structural color mate- rials, In: Chemical Society Reviews, Vol. 41, Issue 8, 2012, Pages 3297-3317, DOI: 10.1039/C2CS15267C: http://dx.doi.org/10.1039/C2CS15267C


Oregon State University (OSU), USA, present the first report of resistive switching in zinc-tin-oxide. The researchers at OSU have confirmed that zinc tin oxide has significant potential for use in this field, and could provide a new, transparent technology where computer memory is based on resistance, instead of an electron charge. This resistive random access memory, or RRAM, is referred to by some researchers as a “memristor.” Products using this approach could become even smaller, faster and cheaper than the silicon transistors that have revolutionized modern electronics – and transparent as well.


Santosh Murali, Jaana S. Rajachidambaram, Seung- Yeol Han, Chih-Hung Chang, Gregory S. Herman, John F. Conley Jr.: Resistive switching in zinc-tin-oxide, In: Solid-State Electronics, July 30, 2012, DOI:10.1016/j. sse.2012.06.016:


http://dx.doi.org/10.1016/j.sse.2012.06.016


A research team at the University of Delaware (US) studied paramagnetic colloids while periodically applying an external magnetic field at different intervals. With just the right frequency and field strength, the team was able to watch the particles transition from a random, solid like material into highly organized crystalline structures or lattices.


James W. Swan, Paula A. Vasquez, Peggy A. Whitson, E. Michael Fincke, Koichi Wakata, Sandra H. Magnus, Frank De Winne, Michael R. Barratt, Juan H. Agui, Ro- bert D. Green, Nancy R. Hall, Donna Y. Bohman, Charles T. Bunnell, Alice P. Gast, and Eric M. Furst: Multi-scale kinetics of a field-directed colloidal phase transition, In: PNAS Early Edition, September 17, 2012, DOI:10.1073/ pnas.1206915109:


http://dx.doi.org/10.1073/pnas.1206915109

Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93