This book includes a plain text version that is designed for high accessibility. To use this version please follow this link.
The researchers are now testing whether it is possible – where two metal surfaces are in contact with each other – to apply a coating to the surfaces formed of hard particles and capsules filled with liquid lubricant. “We apply the lubricant using a thermal spray technique, where powder and capsules are fired at the surface using a flame,” says Sergio Armada of SINTEF Materials and Chemistry. “When the metal surfaces come into contact with each other, the coating is broken down in a controlled manner, releasing the contents of the capsules, and the lubricant will then prevent further friction.”


The researchers have carried out a number of tests on slide bearings in industrial settings, in which they have measured friction on surfaces with and without the capsules. When a coating without capsules was applied to the slide bearing, the friction coefficient was 0.7, while friction was reduced to 0.15 in bearings coated with a layer of capsules.


http://www.sintef.com


Researchers in Aalto University have developed a new concept for computing, using water droplets as bits of digital information. This was enabled by the discovery that upon collision with each other on a highly water-repellent surface, two water droplets rebound like billiard balls.


Image: Water droplets moving on a superhydrophobic surface collide with each other and rebound like billiard balls. © Aalto University


Henrikki Mertaniemi, Robert Forchheimer, Olli Ikkala, Robin H. A. Ras: Rebounding Droplet-Droplet Collisions on Superhydrophobic Surfaces: from the Phenomenon to Droplet Logic, In: Advanced Materials Early View, September 04, 2012, DOI: 10.1002/adma.201202980: http://dx.doi.org/10.1002/adma.201202980


http://www.youtube.com/watch?feature=player_embedded&v=GTnVwyWaVQw


http://www.youtube.com/watch?feature=player_embedded&v=ygMdQ9NUbok


 


Researchers from Berlin, Louvain, and from Karlsruhe Institute of Technology present a new method to produce photonic crystals. The SPRIE – Sequential Passivation and Reactive Ion Etching – method can produce a three-dimensional photonic crystal within a few minutes, as it is based on conventional industrial processes. In principle, a three-dimensional structure can be generated in silicon using a freely choosable mask. This opens up new possibilities for meeting the requirements made on optical components in telecommunications.


“Our new SPRIE fabrication methods uses established technologies, such as etching and innovative methods like self-organization and combines them in a very creative manner,” says Martin Wegener, Professor of the Institute of Applied Physics and Institute of Nanotechnology of KIT, Germany, and coordinator of the German DFG Center for Functional Nanostructures (CFN). The SPRIE method

Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93