This book includes a plain text version that is designed for high accessibility. To use this version please follow this link.
Engineers at Oregon State University have made a breakthrough in the performance of microbial fuel cells that can produce electricity directly from wastewater. The new technology developed at OSU can now produce 10 to 50 more times the electricity, per volume, than most other approaches using microbial fuel cells, and 100 times more electricity than some.


Yanzhen Fan, Sun-Kee Han and Hong Liu: Improved performance of CEA microbial fuel cells with increased reactor size, In: Energy & Environmental Science, Vol. 5, Issue 8, 2012, June 13, 2012, Pages 8273-8280, DOI:10.1039/ C2EE21964F:


http://dx.doi.org/10.1039/C2EE21964F


A research group including Hokkaido University, NIMS, etc., succeeded in developing a novel alloy catalyst in which the platinum atoms and ruthenium atoms that contribute to improved efficiency in residential-use fuel cells are perfectly intermixed.


The theoretical and experimental framework of a new coherent diffraction strain imaging approach was developed in the Center for Nanoscale Materials‘ X-Ray Microscopy Group in collaboration with Argonne‘s Materials Science Division, together with users from IBM. Nanofocused X-ray Bragg projection ptychography creates a tool to efficiently image strain fields with unperturbed boundary conditions in technologically and scientifically relevant energy systems. This new technique is capable of imaging lattice distortions in thin films nonde- structively at spatial resolutions of <20 nm using coherent nanofocused hard X-rays. This work marks a significant step forward in the development of non-destructive coherent X-ray diffraction imaging techniques for the study of nanoscale lattice features in real materials under real conditions.


Figure: Residential-use solid polymer-type fuel cell system (polymer electrolyte fuel cell: PEFC), and an enlarged diagram of the developed catalyst (lower left). http://www.nims.go.jp/


(Top) Focused beam coherent X-ray nanodiffraction patterns collected from a SiGe-on-SOI prototype device edge and (middle and bottom) projected strain field reconstructed by ptychographic methods. © ANL


 


S. O. Hruszkewycz et al.: Quantitative nanoscale imaging of lattice distortions in epitaxial semiconductor heterostructures using nanofocused X-ray Bragg projection ptychography, In: Nano Letters, Vol. 12, Issue 10, October 10, 2012, Pages 5148-5154, DOI: 10.1021/nl303201w:http://dx.doi.org/10.1021/nl303201w


http://nano.anl.gov/research/xray.html


 

Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93