This page contains a Flash digital edition of a book.
In order to interpret the cumulative frequency (which rep- resents the y-axis) of the variable x, the P(x), a commonly applied method was used:


Equation 3


In this equation the reorganized ‘n’ data points (ascend- ing order) are assigned a ranking of j in the range of (1-n), such that each point has a ranking P(j) on the cumulative frequency plot. A combination of this ranking for P(x) data set with the previously described equation (2) yields the Weibull plot.


Chill #2, Iteration #5


The usefulness of this analysis comes from the realization that different distributions of data of variable ‘x’ will yield different amounts of scatter in the data sets. The Weibull modulus ‘m’ in equation (2) is a quantitative measure of this scatter, such that the greater the value of ‘m’, the steeper the slope of the Weibull plot, and the smaller the scatter in the data. This translates into a narrower range of the analyzed property. The smaller the value of ‘m’ on the other hand, the shallower the slope of the Weibull plot, which implies a large scatter in the analyzed data. This in turn makes accu- rate predictions of the material property that much more dif- fi cult. As a result, it becomes evident that the ‘m’ parameter in the Weibull analysis is a powerful tool in the tensile data analysis, and material reliability in particular.


Cross section taken for LOM.


See Figure 5a ►


Chill #2, Iteration #5


the Chill #2 (iteration #5) directly below the fracture surface. Cross-section taken is indicated on the fractured surface. Additional Scanning Electron Microscopy / Secondary Electron (SEM/SE) micrographs of the fractured surface were taken as indicated on the fracture surface images (dashed box regions). Included is a high magnifi cation image with a 200 µm bar scale.


Figure 3b. Secondary Dendrite Arm Spacing (λ2 36 International Journal of Metalcasting/Winter 10


), and porosity measurements on the tensile bar cross-sections from


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85