search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
MODELLING AND SIMULATION


Ltd, installs optimised CFD software on its cloud platform (both private and public) and allows customers not only to run CFD in-house but also leverage public instances to handle excess or time-sensitive workloads as and when the business demands. ‘That means,’ said Power, ‘that it’s a very cost-effective way for small or less rich engineering firms to be able to access a similar suite of programs as the larger companies. ‘OpenFOAM is an industry standard


open source software package. It’s very, very good. It can certainly compete with commercial software, as it allows the customer to set up an environment very quickly and very cost-effectively. The cloud environment is also open source, it’s based on open stack, and we tune for HPC. CFD is one of those programmes so we create a framework in the cloud and that’s already optimised for the customer.’


Path of least resistance The bike manufacturer then simply needs to begin testing their models, as Power continued: ‘They create a model which is a design of their bike and they will run it through the algorithms, computational part of the fluid dynamics and that gives them the capability to view the results and make changes to the bike to optimise its performance. If you’re talking about a racing bike, they’re almost certainly looking at pregeometries of the riders, so


www.scientific-computing.com | @scwmagazine


“You used to have to do a lot of modelling within the wind tunnel and that is really being moved away from”


they can see that when the rider is cycling, the position that he has, the amount of resistance or drag, and then looking at the bike design to make sure that it has the minimum amount of friction resistance speed through the air. So that’s essentially what they’re looking for, to optimise how that bike moves through the air.’ vScaler uses its OpenFOAM expertise


to tune models for customers as a service, having already gone through the process of all of the optimisations in the background. ‘That will include,’ explained Power, ‘things like TPU pinning, optimising the meshing, lots of different optimisations that are done to ensure that when the customer starts to run that programme they are running it on optimised systems, so essentially we are taking away a lot of the requirement for a CFD software specialist at the customer’s end, to allow them to actually run their models and get the best performance from the computer.’ Looking to the future of modelling and simulation, Power referred back to the Formula 1 model comparatively,


and concurred with Marcha’s view that developments are moving beyond the traditional wind tunnel alone. ‘You’re able to compute a lot larger models now many times,’ he said. ‘You used to have to do a lot of modelling in the wind tunnel, and that is really being moved away from. There are only very specific parts that you now need to model within the wind tunnel. For example, within Formula 1, there is a much larger move towards computational process, and then proving on the track, than the amount of time that was spent building models, putting them into a wind tunnel, running it, analysing it, whatever. It’s significantly faster in terms of the time that they can get their results. This will absolutely apply in the racing bike arena as well.’


Tunnel vision Simulation technology specialist Altair has an entire suite of simulation products available under the HyperWorks brand. This was utilised by the research and development team at Specialized Bicycle Components when they developed a new bike for the 2015 Tour de France. ‘This bike is our go-fast bike,’ explained


Chris Yu, aerodynamics and research and development lead at Specialized. ‘It’s a race bike, so it was designed for aerodynamics, first and foremost, but also a very close partner to that, in terms of target, was structural and weight, so


August/September 2018 Scientific Computing World 27


g


Radu Razvan/ Shutterstock.com


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36
Produced with Yudu - www.yudu.com