search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Technology


Updating the boats for a wider range of conditions and building new wing rigs for the SailGP fleet of F50 foiling cats is not only about making them super-fast and super-reliable... it is also about making sure all boats in the fleet are precisely as fast as each other


As the SailGP circuit moves into its second year, a great deal of refinement and development has been poured into every aspect of the complex operation – not least on the boats themselves, which will be fitted with a new set of wings for 2020, made by Core Builders Composites (CBC) in New Zealand, which handles all of the manufacturing for SailGP. When the SailGP project took flight with its inaugural event at Sydney in January last year, the first priority was to standardise the hull platforms and foils, but there was no time to build a new set of wings.


‘The whole concept is for all the equipment to be strictly one-design, but, while the America’s Cup wings were very similar in profile, they all had quite different control systems,’ says Mark Turner, the managing director of CBC. ‘The next phase was obviously to fully standardise the wings across the fleet, which provided an opportunity to take a clean-sheet approach and come up with a new solution that is tailored to the particular demands of SailGP.’ This has involved a total redesign with two primary but related objectives: to extend the range of wind conditions in which the boats can continue racing and also to improve the control systems, in terms of the speed, accuracy and range of shape adjustment that can be achieved.


In what is essentially a tightly run and sophisticated entertainment package, SailGP operates within a


70 SEAHORSE


No bigger ask


brutal set of constraints dictated by broadcasting schedules and spectators paying for stadium tickets to watch an open-air, weather- dependent sporting contest. When the curtain goes up at the advertised time on the allocated weekend, the show must go on.


Confirming the age-old adage that when “man plans, God laughs”, the first year saw racing curtailed on a number of occasions due to too much or too little wind.


Under the direction of SailGP’s design director, Mike Drummond, a team of designers and engineers spanning multiple disciplines set about tilting the odds more in favour of man’s plans. The result is a modular structure with elements that can be added or removed to provide three configurations: a standard 24m wing, a heavy weather 18m wing and a light-air 29m version.


The profile shape is determined by the top and bottom sections, while the height is determined by the middle section(s). Directly joining the top and bottom sections creates the 18m wing. Two different height mid- sections can be deployed, either creating the 24m or 29m rig. Because the top and bottom sections are always used, the main standing rigging components attach to them with the shroud lengths adjusted accordingly.


‘Solving the heavy wind part of the problem was fairly straightforward from a design point of view,’ says Drummond. ‘Just make the rig short


Above: the SailGP boats hit the water with new fully standardised wing sails and identical sail control systems to ensure even closer racing and a totally level playing field for the teams. The new rigs allow three different sail area options to enable the boats to race effectively across a wider range of wind


conditions. With the 29m tall light airs rig deployed, good racing should now be possible in just 4kts of breeze


enough and the limitations become sea state and foil control and cavitation. My expectation is that the boats could be sailed in more than 30 knots with the short wing. ‘Light winds pose a much harder technical problem because the force available is related to windspeed squared, so between six knots and four knots of windspeed, there is a 60 per cent drop-off in force to get moving. Other factors working against good light wind performance are that lift-induced drag from the rig increases at higher lift coefficients and a larger wing is heavier.’ Drawing some inspiration from racing One-Metre radio-controlled yachts, which utilise three rigs and can race effectively in a 3-30 kt wind range, Drummond says by gaining more area, reducing lift-induced drag and increasing heeling leverage, the 29m rig should enable good racing in as little as 4kts of breeze. In plan form, the wings look very similar to the America’s Cup versions. Developed by Tom Speer, the wing sections are slightly thicker, first to improve the lift coefficient in light air and second to improve buckling stability when the 29m version is deployed.


‘The new wing is derivative only because the original wings were very well designed,’ says Drummond. The constraints in the redesign were only the need to fit with existing boats, righting moment and balance, although reducing building time, material wastage and spare parts


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122