LED Technology
Versatile LED driver can be used with input voltages above or below the level of the LED string
Victor Khasiev, senior applications engineer, Analog Devices
T
he LTM8042 is a µModule LED driver capable of supporting LEDs with up to 1 A current and a 3000:1 dimming ratio. It operates from input voltages of 3 V to 30 V and a wide frequency range of 250 kHz to 2 MHz, enabling its use in a wide array of applications, such as scanners and automotive and avionic lighting. The LTM8042 can be easily configured
in three topologies—boost, buck, and buck-boost—to meet a wide variety of specific application requirements. For
Boost LED driver
The most common topology for an LED driver is a boost application, as might be used for an LED array powered from a 12 V input rail, where VIN < VF. An LTM8042 boost solution is shown in Figure 1 with a block diagram shown in Figure 2. The input voltage is connected to the BSTIN/BKLED– terminal and the LED string cathode is connected to GND. When transistor Q is on, the current builds up in the inductor L. Once Q turns off, the voltage across L changes polarity and the inductor current
Figure 3. LTM8042 block diagram connections in buck configuration.
industrial 24 V rails. Figure 3 shows a block diagram for a configuration for VIN > VF. The input voltage connected to the BSTOUT/BKIN terminal and LED cathode connected to the BSTIN/BKLED– terminal. When transistor Q is on, current flows from the input through the LED string and inductor L to GND. Once Q turns off, the voltage across L changes polarity and diode
through the LED and C5, and the C2 functions as an output filter. The LED string voltage VF can be below or above VIN.
Test results for the three topologies All three topologies were tested using the DC1511 demonstration circuit featuring the LTM8042—using the same LED string,
Figure 1. The LTM8042 driving four LEDs where VIN = 5.75 V to 10.25 V and IOUT = 0.5 A.
low input voltages and high string voltages, a boost topology is appropriate, whereas a buck is more suitable for high input voltages and low string voltages. A buck-boost topology is used for a wide range of inputs where voltage can be below or above the LED string. This article covers the process of selecting the suitable topology and its corresponding connections.
begins flowing to output filter capacitor C2. LED dimming is implemented in the PWM section, which regulates the duty cycle, and by extension the average LED current (set by resistor RCLR). Capacitor C1 is an input voltage filter.
Buck LED driver
A buck topology is used for relatively high input voltages, such as automotive and
Figure 4. LTM8042 block diagram connections in buck-boost configuration.
D becomes forward biased, pulling the LED cathode below the input voltage level, providing the set value of the current in the LED string. C5 creates an output filter for this topology.
Figure 2. LTM8042 block diagram connections in boost configuration. 26 November 2019 Components in Electronics
Buck-boost LED driver In many commercial, battery, and solar- powered applications, the input voltage varies over a wide range. In these situations, the buck-boost topology shown in Figure 4 is best. The input voltage and LED cathode are connected to the BSTIN/BKLED– terminal. When transistor Q is on, the current builds in inductor L. Once Q turns off, the voltage across L changes polarity, forward biasing diode D while the voltage climbs above the input level. The PWM maintains the set value of current
output current, and switching frequency in all cases. To make sure that bias power dissipation is the same for all three settings, the same VCC (shown in Figure 1) was supplied as well. The VCC pin can be tied to VIN in most cases. Figure 5 shows the resulting efficiency curves. All three topologies were also modeled in LTspice environments and simulation files related to LTM8042 can be found in its data sheet. LTM8042 is a versatile and efficient LED driver capable of operating over a wide input voltage range, while providing up to 1 A LED string current. The LTM8042 is easily applied as a boost, buck, or buck- boost driver to satisfy the needs of a wide variety of applications.
analog.com
www.cieonline.co.uk
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56