PC-APR24-PG40-41.1_Layout 1 10/04/2024 11:15 Page 40
FOOD & BEVERAGE ‘NEW’ FOODS REQUIRE
PRECISE TECHNOLOGY With the offer of non-animal food continuously growing, the processing of protein powder ingredients poses a challenge. Dr.-Ing. Hans- Joachim Jacob, from ystral, explains how this can be overcome by the dispersing of protein powders in the vacuum expansion process
glance onto the shelves of an ordinary supermarket shows vegan food increasingly takes up space next to animal-based products such as meat or milk products. For example, as an alternative to animal milk, and in addition to oat, soy, rice, coconut or almond drinks, the range offered by food retailers increasingly also includes products based on plants such as peas, lentils, adzuki or fava beans, cashews or peanuts. There are also vegan versions of whipping cream, yoghurt and spreads available. While so far, vegetable proteins have been the most important ingredients of the “new food” products, in future, additional protein types are expected to increasingly gain in importance. This applies in particular to fermented proteins. Such proteins gained from bacteria or yeasts have a neutral taste, are inexpensive and resource-saving in their production, easily digestible, and contain – a crucial advantage compared to plant-based proteins – all essential amino acids as well as vitamin B12, which is indispensable for the human organism.
A
What the alternative proteins used in the new food segment have in common is that they are difficult to process, and they also have very different characteristics. Wheat protein for example is extremely cohesive, while soy protein is extremely adhesive. If protein powders of seeds, grains, nuts and pulses are mixed into water, they are prone to clogging, agglutinating and foaming. The proteins are shear-sensitive on the one hand, but at the same time, they require high shearing while being dispersed into the liquid. Therefore, shearing under controlled conditions is required, in a very short period of time.
To achieve optimum product quality, what is crucial is that agglomerates that are contained in powders are instantly broken up fully when mixed into the liquid, and the formation of new agglomerates is prevented from the outset. Otherwise, these agglomerates must be broken down subsequently through long stirring and time- consuming redispersion - with negative
40 APRIL 2024 | PROCESS & CONTROL
consequences for the product quality. Dispersing the agglomerates damages the quaternary and tertiary structure of the already hydrated protein and impairs the viscosity and texture in an uncontrolled way. Equally, with regard to the starch contained in the powder, the prevention of agglomerates is also very important. The degradation of starch usually occurs through enzymes, occasionally also through acids. If powder particles are already separated before the infeed of liquid, and highly dispersed during powder induction, the enzymatic degradation of the starch is supported and thus accelerated.
With conventional agitators, injectors or in- line blenders, however, the particles always come into contact with the liquid as compact discharge. This leads to sturdy, partially wetted agglomerates, which are difficult to break down. Redispersion then not only costs considerable amounts of time and energy - but the air, which is contained in the protein powder, is also dispersed to form undesired micro foam by this means. When protein powder is inducted into the liquid during conventional processing methods, it either fully flocculates, or sticks to the machine parts. This results in local overheating, discolouration or even burns on rotating parts and a slightly burnt taste of the end products. A large part of the proteins that were not fully unlocked is filtered out unused at the end.
These problems of conventional process engineering solutions are avoided when using the vacuum expansion method from mixing and dispersion technology specialist ystral. Here, the air contained in the powder is expanded by a multiple, which significantly enlarges the distance between the particles. The primary protein particles are separated before they enter the liquid, they are completely wetted on first contact with the liquid, they are dispersed in-situ under vacuum, and are subsequently hydrated without agglomerates under pressure. The whole process takes 2 to 3 hundredths of a second, with minimal heat input. The powder is immediately completely disintegrated. No
agglomerates are formed. The texture is not damaged or destroyed. The process time compared to conventional technologies is significantly reduced here.
Through this intensive dispersion, less enzymes are needed for the degradation of starch compared to conventional procedures. The air, which was previously contained in the powder, is separated from the heavier dispersion through the centrifugal effect of the fast-running rotor and coalesces to large air bubbles, which can easily escape in the process vessel. Foam, which is usually generated through protein processing, is almost completely prevented this way. The machine and system design from ystral can be precisely tailored to the requirements of the respective powder type. While for the processing of oatmeal for example - same as for soy and rice - dispersing in the vacuum expansion process with an inline operated powder wetting and dispersing machine YSTRAL Conti-TDS is sufficient, other powders containing protein (such as coconut or some pea flour) require additional dispersing under high shearing, to fully break down the product. In these cases, in addition to the Conti-TDS, ystral uses a Z-Inline Disperser, which
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56