search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
PC-APR24-PG28.1_Layout 1 10/04/2024 09:43 Page 28


SCADA & DATA ACQUISITION


The building blocks of a secure network


collection. Maintenance staff and system integrators with networking experience are perhaps best equipped to help define where the installation of new measuring devices would be most efficient and most easily achieved. IT can provide the necessary data repositories and backups while ensuring cyber security.


While I have tried to avoid using buzzwords so far, I would like to introduce a paradigm that some may consider a buzzword: edge computing. Data can be collected from many


HOW THE SMART FACTORY BECAME SMARTER


What happened to our early visions of the Smart Factory? And where are we today? Here, Mark Clemens, Connectivity Architect and Security Strategist at COPA-DATA, explains the shifting vision of a smart factory


oday, our understanding of the “Smart Factory” is unequivocally linked with deep learning and AI. This is very different to our understanding of the concept fifteen years ago, when the first visions of the Smart Factory of the future emerged. We lack a globally accepted definition of “Smart Factory”. Further, what we label as “the factory of the future” today is likely to be different to the concept 10 years from now. The term also implies an end state which, once reached, provides no further room for improvement. Surely the Smart Factory built 10 years ago has become smarter since? Likely, it’s seen improvements due to further investment and by making better use of available information. I, therefore, prefer the term “Smarter Factory”.


T


The goal of a Smarter Factory is achievable in small steps, with the chance to learn while doing. A Smarter Factory approach can also be applied to existing factories – whether there is already technology, automation, and data collection in place or not. While one can debate the argument, I think that making an existing factory smarter is much more easily achievable than building a new Smart(er) Factory from the ground up. But where to begin? It definitely makes sense to define a Smarter Factory strategy from which small achievable goals can be derived. This allows for an iterative, agile approach. Many topics can be worked on in parallel, rather than starting one big project for which the benefits may be hidden from the business for a long time. It is key to get people involved from different domains from


28 APRIL 2024 | PROCESS & CONTROL


the very beginning, especially when improvements could make some job roles superfluous. The involvement and outlook of different roles in an agile process provides future perspective and reduces the risk of efforts being sabotaged.


Let’s take one example where there are quick wins to be had: a company thinking about net zero and how to move from fossil fuels to electrification. One challenge is the grid connection which cannot quickly be upgraded to the necessary capacity by the electricity provider. Not doing anything is not an option. Local generation, in combination with storage, could be a viable option if you know what your energy consumption looks like and where peaks can be shaved. Such an effort fits into a Smarter Factory strategy and it starts with information that may not be readily available from everywhere.


Rather than installing energy meters at every piece of equipment, interrupting production processes, the energy consumption of a piece of equipment may, for example, be derived from an existing sensor that is used for some other purpose in its PLC program. Other equipment energy consumption may be measured once so that subsequent consumption can be extrapolated from the operating hours of the equipment as provided by daily manual recordings. Experienced shop floor workers probably know the conditions when equipment is running but could be idle. When existing intelligence is used smartly a lot can be gained. Nevertheless, at some point, it will be necessary to implement automated data


energy meters and other devices as fast as 100 milliseconds, generating a lot of data. While I can agree that data is the new gold, this idea does need to be put into perspective. It’s gold when you have the right kind of data to answer a pressing question. Like gold, the value of data fluctuates. Energy consumption data has less value when energy prices are low. It’s worth more during an energy crisis. And having huge amounts of consumption data without context related to other sensory and production information, may even prove to be as valuable as fool’s gold. Many energy meters provide their information through the Modbus protocol. It has no mechanism for conveying timestamp information or quality information. Challenges around data consistency must also be considered. When an energy meter needs to be replaced, a sudden change in the energy consumption reading can throw off downstream logic, algorithms and reporting. While standards are emerging for unifying information over Modbus – such as Sunspec – not all meters support this. Other data used as virtual energy consumption data needs some transformation and harmonisation in order to be useful.


Ideally, data should be reduced to only what is needed downstream for visualisation, reporting, and decision making. All these tasks can be performed or computed locally, close to production, i.e. at “the edge”. With COPA- DATA's software platform, zenon as your edge computing engine, it’s easy to provide qualified, timestamped, harmonised, aggregated, consistent, and context-related data. With zenon version 12 available on Linux for selected communication protocols and functionality, it’s even easier.


A fully autonomous, self-optimising, self- maintaining, self-healing, perpetual process factory may today be science fiction. But, in future, we will be needing factories that are smarter still.


COPA-DATA www.copadata.com


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56