search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
TECHNICAL | DRILL & BLAST


2,000,000


1,800,000 1,600,000 1,400,000


1,200,000 1,000,000 800,000 600,000 400,000 200,000 0


Total 2024


Total 2023


Above: Comparative tunnelling by contractors in Norway over 2023-2024 INFORMATION COURTESY OF THE NORWEGIAN TUNNELLING SOCIETY (NFF) The Eurock paper adds to this work, primarily by


drawing upon more tunnelling project data. Two new projects were added to the database, with their specific charging (kg/m3


per blast and cut design). The key difference with these projects, though, was to widen the D&B conditions in the database by adding different geology, equipment, operational crew, tunnel cross-sections, and face lengths. The data came from tunnelling contractors via their reporting systems to authorities. The paper also notes that project data, which


considered a total of 353 individual and new blast rounds, show the same trends as found in the previous research: current blast design differs from the principles in the NTNU model by using more charged drill holes per round; plus, higher specific charging. It notes that for road tunnel the increase in specific


change as doubled in some projects, irrespective of contractor, drillhole diameter, drill length or the rock Blastability Index (SPR). A main hypothesis is, as in the prior research, the view that use of bulk slurry emulsion as a type of explosive in Norwegian tunnelling these days is susceptible to “unintentional over-consumption” or waste, compared to cartridge explosives which were previously dominant, around 20 years ago.


) and drilling data (No of charged holes


More project-based research is needed though. But, even before then, it notes that with the current


practice in blast design “seemingly” not regarding the SPV is a “matter of big concern”, and that contractors “elect to use more explosives regardless of rock blastability or rock type.” It queries the possibility that a contribution to this apparent approach is how tunnelling contracts are organised, “favouring high production rates and low cost”. The paper says that higher specific charge should


lead to more rock fragmentation, which may help mucking out but rock quality and usefulness for re0use might be affected. It adds that, if this is so, the NTNU model could be adjusted to be more in line with current practice by adjusting the SPR, appropriately with size distribution compared to the original in the model (half to be less than 250mm sieving size). More broadly, the paper says that the project data


studied gives a “rather large variation envelope” and is bigger that the possible output envelope offered by the current NTNU models. However, the paper notes that the NTNU model deals with averages, not projects and their variations - which is a caution urged upon those who might use the model “for risk analysis or a as a guideline in legal disputes in specific projects in the future.”


REFERENCES ● Gjengedal, S., Jakobsen, P.D. & Nilsen, H. R. F. (2025) ‘Current practice D&B tunnelling versus the


NTNU prognosis model for D&B blast design - a case study’. Eurock 2025, Trondheim, June 2025


● Jakobsen, P.D., Grøv, E., Bruland, A.; Gjengedal, S. (2024) ‘Validity of the NTNU Prediction Model for D&B Tunnelling’. Rock Mech Rock Eng 57, 781–791. https://doi.org/10.1007/s00603-023- 03585-9


● Jakobsen, P.D., Grøv, E., Bruland, A.; Gjengedal, S. (2024) Validity of the NTNU Prediction Model for D&B Tunnelling. T&TI, Feb 2024


16 | August 2025


m3


Skanska


AF (inc Ghella) Haehre


Veidekke Implenia Metrostav LNS


B&G Tunnel Sotralink Eiffage NCC


Birkeland


Ottar Dvergsdal Aurstad


VTG-Anlegg Flage Maskin BMO


Bleikvassli Hywer


PA Entreprenør Mesta


Spilda Entr. Hardangermaskin


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141