ADVANCED REACTORS | TAILWIND FOR REVIVAL
Above: The Rolls Royce SMR design is closely related to conventional PWRs Source: Rolls Royce SMR
A recently published report on behalf of EPRI and
conducted by CRA titled, shows how across 1000 Monte Carlo simulations, a first of a kind (FOAK) small modular reactor (SMR) has an overall average capital cost that is 16% less than a conventional light water reactor (LWR), primarily driven by lower financing costs resulting from shorter construction durations. This could ultimately result in lower total project costs for smaller reactors compared to their larger counterparts when considering both overnight and financing expenses. Additionally, when integrated with thermal storage,
advanced nuclear technologies can provide enhanced flexibility in the delivery of ancillary services, further underscoring their intrinsic advantages compared to conventional alternatives.
Market developments The report says that merits of advanced nuclear technologies present a strong case for potential investment opportunities. While external influences, such as government and industry, play a major role in de- risking investment, the role of the investor itself is critical
in bridging the investment gap needed to enable the transition towards second-of-a-kind reactors and achieve commercial returns. “There is an argument to say that it is not which design will win, but which one will be able to be deployed first. There’s a variety of market policy and regulatory factors, skills factors, supply chain and fuel factors that must be addressed, but at the end of the day, you need that customer demand and you need the funding to be able to get it not just to first of a kind, but to commercial return, which requires Nth of a kind deployment. This is where the returns that make it economic can be seen. The industry needs enough funding for it to get to not just one, but perhaps four, seven, reactors that enable Nth of a kind projections. At this point, the economic benefits align and compound the otherwise existing inherent benefits of small reactors, such as the ability to power remote locations and offset grid infrastructure problems, and the modular construction and factory build approach that is poised to offset costs,” she says. The report highlights a number of examples of policies
encouraging private sector engagement, noting for example, that Canada and the US have consistently supported nuclear as part of their energy mix. Both countries have extensive governmental backing for the advancement of nuclear technologies. Canada’s introduction of a clean technology investment
tax credit of 30% explicitly focuses on SMR technology. Canada also recognises nuclear energy as a ‘fundamental and necessary component’ of the low-carbon energy system.
In addition, the development of SMRs is supported at both the national and provincial levels. The federal government released its SMR Roadmap in 2018 and SMR Action plan in 2020, supporting the development, demonstration and deployment of SMRs for various uses domestically and internationally. Canada’s federal budget for 2023, announced in March, provided a 15% refundable investment tax credit for clean electricity, including nuclear. This credit is separate from the clean technology investment tax credit introduced in the 2022 federal budget, which provided a tax credit of up to 30% for non-emitting electricity generation technologies, including SMRs. On March 28, 2022, the provinces of Ontario, New Brunswick, Saskatchewan and Alberta released a plan outlining a path forward for SMRs as a deliverable under the provincial SMR memorandum of understanding (MoU). Ontario Power Generation (OPG), Bruce Power, New Brunswick Power and SaskPower have been working collectively to develop three streams of SMR project proposals. On September 21, 2023, the province of Alberta announced the allocation of US$5m in funding (C$7m) towards a multi-year research initiative aimed at assessing the techno-economic feasibility, as well as considerations for safety behind implementing SMRs within oil sands operations. As Kotak says: “Such policy measures would give
Above: The GE Hitachi BWRX-300 advanced reactor Source: IAEA 36 | December 2023 |
www.neimagazine.com
confidence to investors that this is a technology that we are going to support and it is not going to be dropped and lose your investment. Similar to what was done with wind and solar. It’s only at the price it is today because of that level of support to drive innovation and driving new supply chains. Private investment has come in now because of the amount of subsidies that went into it from the outset.”
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53