search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
17 plan.


Area and Perimeter


We are learning to: Calculate the area of 2-D and 3-D shapes. Investigate the relationship between area and perimeter.


Calculate the area of a room from a scale


Day One Study the steps used to solve the problem in the example below. Draw a quadrilateral with a perimeter of 30 cm and an area of 36 cm2


. Top tip:


To solve this puzzle, draw all quadrilaterals with an area of 36 m2


in order


to find one that has a perimeter of 30 cm.


Estimate and calculate: Perimeter = 12 cm + 12 cm + 3 cm + 3 cm = 30 cm


Area = 12 cm x 3 cm = 36 cm2


Summarise and check how you got your answer: I drew all of the quadrilaterals with an area of 36 cm2 one with a perimeter of 30 cm.


Try these. A square has an area of 49 m2


1 What is its perimeter? Answer: 2 The area of a shape is 120 cm2 .


What might its perimeter be? (There is more than one answer.)


Answer: 3


Draw a square whose perimeter is the same as its area. Share your answer with your classmates. Did you all use the same measurements?


Marks: 72 Strand: Measures Strand Units: Area; Length Today’s Marks: /2 /6 Marks: /2 Marks: /2 . and found just


Circle the numbers and keywords: perimeter of 30 cm, area of 36 cm2 Link with operation needed (+, −, × or ÷): + (perimeter). x, ÷ (area). Use a strategy: Visualise and use trial and improvement. 12 cm


3 cm


Week 17


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133