15 Length
We are learning to: Rename measures of length. and irregular shapes.
Complete investigations involving the perimeter of regular Use and interpret scales on plans. Day One Study the steps used to solve the problem in the example below.
Sarah cycled 12 km in 45 minutes. How far could she cycle in 2 hours if she maintained the same speed throughout?
Circle the numbers and keywords: 12 km, 45 minutes, 2 hours Link with operation needed (+, −, × or ÷): ÷, ×, +. Use a strategy: Visualise. This bar model represents 1 hour:
1 hour Top tip:
Sarah can cycle more than 12 km in one hour. I doubled this to find my estimate.
4 km 4 km
Estimate and calculate: My estimate: over 24 km
4 km
3 4 of an hour = 12 km
1 hour = 16 km
Answer: 32 km
Summarise and check how you got your answer: I worked out how far Sarah could cycle in 1 full hour. I doubled this to find the distance that she could cycle in 2 hours.
Try these. 1
If Olivia can run 2 km 500 m in 40 minutes, how far could she run in 1 hour and 40 minutes?
2
Olivia’s friend Shane can run 3.6 km in one hour. What is the difference between how far he and Olivia run in 1 hour and 40 minutes?
3
Zach and Fred ran a combined distance of 285 m in one minute. The difference between the distances that they ran was 11 m. If Zach ran farther, what distance did each boy run?
64 Strand: Measures Strand Unit: Length
Answer:
Marks:
/2
Answer:
Marks:
/2
Answers: Zach: Fred:
Marks: Today’s Marks:
/2 /6
Week 15
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133